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Preface

“The book of nature is written in the language of mathematics.” This is the essence
of the profound observation made by Galileo Galilei as far back as 1623. Evidence
in support of this insight has accumulated ever since. Much has been written about
what has been termed ‘“the unreasonable effectiveness of mathematics” in the
description of physical phenomena. Is mathematics inherent in nature itself, or is it a
construct of the human mind? This deep question has also been debated intensely
among mathematicians, physicists and philosophers of science. Whatever be the
answer, it is undeniably true that mathematical structures seem to be embedded
deeply in the physical universe.

After approximately four hundred years of continuous development, physics is
undoubtedly the most ‘mathematized’ of the sciences. Physics attempts to describe
nature in precise and logical terms, and it requires a language that has logic built
into it. As Richard Feynman put it, “Mathematics is language plus logic”. A certain
degree of facility in mathematics is therefore not only helpful, but also absolutely
necessary, in order to really understand physics and to appreciate its concepts and
laws even at an elementary level.

But what kind of mathematics does physics entail? Both physics and mathe-
matics are very vast domains. The natural question that arises in the mind of a
student beginning the study of physics is, “Exactly how much mathematics do I
need to study and to understand physics?”” There can be no definite or complete
answer to this question, because it depends on the level at which one wishes to
understand the laws of physics and the structure of the physical universe. The
problems that physics addresses require the application of mathematics at all levels.
These range from elementary algebra right up to some of the most advanced
state-of-the-art developments in mathematical research.

Along the way, there are remarkable instances of an almost uncanny match
between a physical context and the specific kind of mathematics needed in that
context. The first such pairing was between the dynamics of motion and calculus.
Indeed, calculus was developed for that very purpose. Subsequent instances are:
electromagnetism and vector calculus; general relativity and Riemannian geometry;
quantum mechanics and linear vector spaces; symmetries in (condensed matter,
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viii Preface

atomic, nuclear, and subnuclear) physics and group theory; Hamiltonian dynamics
and symplectic geometry; and so on. In every one of these cases, the mathematical
structure involved seems to have been tailor-made for the physical problem
concerned.

What is mathematical physics? The fact that physics requires mathematics at
all levels makes the very definition of mathematical physics as a subject in the
university physics curriculum rather fuzzy. Over the years, however, there has
emerged a set of mathematical topics and techniques that are the most useful and
widely applicable ones in various parts of physics. It is this repertoire or collection
that constitutes ‘mathematical physics’ as the term is generally understood in its
pedagogical sense. This book has chapters devoted to most of the topics of this core
set, and considerably more, besides.

Further, I have taken the phrase ‘mathematical physics’ literally. As a conse-
quence, this book is not an applied mathematics text in the conventional sense. As a
glance at the table of contents will show, it digresses into physics whenever the
opportunity presents itself. Although numerous mathematical results are introduced
and discussed, hardly any formal, rigorous proofs of theorems are presented.
Instead, I have used specific examples and physical applications to illustrate and
elaborate upon these results. The aim is to demonstrate how mathematics inter-
twines with physics in numerous instances. In my opinion, this is the fundamental
justification for the very inclusion of mathematical physics as a subject in the
physics curriculum.

To whom is this book addressed? It is my belief and hope that appropriate parts
of the book will serve a wide spectrum of students, ranging from the undergraduate
right up to the doctoral level. More than one route map can be drawn to navigate
through the chapters to form courses at different levels and of different durations.
I have not done so because I believe this choice is best left to the user. Likewise,
fairly self-contained sets of chapters can be selected to provide short courses of
study on specific topics in mathematical physics. Here are some examples of the
possibilities in this regard:

Vector calculus and applications, Chaps. 5-9.

Linear vector spaces, matrices and operators, Chaps. 10-15.
Probability, statistics and random processes, Chaps. 19-21.
Complex analysis, Chaps. 22-27.

Special functions, Chaps. 16, 25, 26.

Basic partial differential equations of physics, Chaps. 29-32.

The chapters listed in each case do not stand in complete isolation from the rest
of the book, of course. In framing short specific-topic courses, it would naturally be
helpful to include appropriate sections from other chapters, as needed.

Exercises and problems comprise an indispensable component of any book on
mathematical methods, and this book is no exception. There are 370 of these in this
book, many of them with several parts and subparts. Most (but not all) of them are
problems, rather than exercises of the drillwork type. They form an integral part
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of the text. In many cases, they require the reader to complete, or verify, or work
out, or extend the details described in the text, in order to acquire a better under-
standing of the subject matter. In other cases, they explore sidelights and inter-
connections between different aspects. For this reason, I have made the problems
contiguous with the text, indicating the beginning of each one with the symbol *.

Solutions: Student readers are best served if a book containing problems also
provides solutions. At the end of each chapter, solutions to the problems therein are
given either in outline or in detail, except in those cases in which the solutions are
obviously straightforward extensions of the text. The end of each solution is
indicated by the symbol ». I reiterate that working out the problems in each chapter
is of paramount importance. Only after an honest attempt has been made should the
reader consult the solutions provided.

The table of contents lists not only the chapters and sections of each chapter, as
is customary, but also the subsections, which is somewhat less common. This has
been done in order to provide the reader with a conveniently detailed list of all the
topics discussed in the book, avoiding the need to hunt for these in the body of the
text. Together with the Index, the table of contents should make it easy for you to
navigate from place to place, back and forth, through this rather lengthy book.

The index at the end of the book runs to thirteen pages. It has intentionally been
made rather extensive, because I believe that the reader should be able to refer
quickly to any topic or theme, and the different contexts in which it occurs in the
book, based on just a keyword or phrase.

Cross-Referencing: As one might expect, numerous topics, themes and equa-
tions appear more than once in the book. I have tried as far possible to
cross-reference these with chapter, section and equation number, so that recall
becomes easier. In a few necessary instances, equations have been repeated for
ready reference.

Above all, it has been my intention fo make this book as comprehensive,
self-contained and amenable to self-study as possible. Naturally, there are many
omissions in the book. Several important topics that I should like to have touched
upon have had to be left out. Examples that stand out include the calculus of
variations, functional integration, the elements of differential geometry, and a more
systematic account of group theory in physics. But the need to keep the length
of the book within a manageable limit necessitated these omissions.

Finally, T must point out that all the mathematics involved in this book is
‘classical’. By and large, more modern and/or abstract parts of mathematics have
not as yet become part of the standard repertoire referred to earlier, although some
areas such as topology and differential geometry increasingly find application in
various parts of physics such as quantum field theory, general relativity and con-
densed matter physics.

This book has been several years in the writing, having grown out of various
courses and sets of lectures given by me over a considerable number of years. I owe
a debt of gratitude to all the students who attended the lectures, asked questions that
set me thinking, and enabled me get a better understanding of the subject matter.



X Preface

I thank Suresh Govindarajan for his generous help and valuable assistance, and
Ashok Velayutham for drawing all the figures in the book. As always, my wife
Radha has been a pillar of support and encouragement, and her assistance has been
invaluable. I dedicate this book to her with affection.

Chennai, India V. Balakrishnan



Contents

1  Warming Up: Functions of a Real Variable . . ... .......... ...
1.1 Sketching Functions . ................ ... ... ... .....

1.1.1 Features of Interest in a Function ...............

1.1.2 Powersof x ... ... .

1.1.3 A Family of Ovals . .. ... ... .. ... ... .......

1.14 A Family of Spirals . ........................

1.2 Maps of the Unit Interval ... .........................

2 Gaussian Integrals, Stirling’s Formula, and Some Integrals . . . . . .
2.1 Gaussian Integrals. . . ......... .. ... o i i il L
2.1.1 The Basic Gaussian Integral .. .................

2.1.2 A Couple of Higher Dimensional Examples. . . ... ..

22  Stirling’s Formula. .. ... ... .. o o o L

2.3 The Dirichlet Integral and Its Descendants . .. .............

24 Solutions . ......... ...

3  Some More Functions . . . . .......... ... ... ... .. ... .....
3.1  Functions Represented by Integrals .....................
3.1.1 Differentiation Under the Integral Sign ...........

3.1.2 The Error Function. . .. ......................

3.13 Fresnel Integrals . . ... ... ... ... ... .........

3.14 The Gamma Function . . . . ....................

3.15 Connection to Gaussian Integrals. . ... ...........

3.2 Interchange of the Order of Integration ..................

33 Solutions . ......... ..

4  Generalized Functions. . . . .......... ... ... ... . ... ...,
4.1 The Step Function ............. ... ... ... ... ... ....

4.2 The Dirac Delta Function ............................
4.2.1 Defining Relations . . ........................

422 Sequences of Functions Tending to the d-Function . . .

O O W W NN ===

xi



Xii

Contents

423 Relation Between d(x) and 0(x) ................ 34
424 Fourier Representation of the -Function . . ... ... .. 34
4.2.5 Properties of the 6-Function . .................. 35
4.2.6 The Occurrence of the é-Function in Physical
Problems .. ... ... ... 38
427 The J-Function in Polar Coordinates . . .. ......... 40
43  Solutions . ........... . 40
Vectors and Tensors . . . ... ... ... ... ... ... 43
5.1  Cartesian TensOrs . . . ... ..ottt 43
5.1.1 What Are Scalars and Vectors? .. ............... 43
5.1.2 Rotations and the Index Notation ............... 44
5.13 Isotropic Tensors . ... ..., 47
5.1.4 Dot and Cross Products in Three Dimensions . .. ... 50
5.1.5 The Gram Determinant . . .. ................... 52
5.1.6 Levi-Civita Symbol in d Dimensions . . ........... 53
5.2 Rotations in Three Dimensions . ....................... 54
5.2.1 Proper and Improper Rotations . .. .............. 54
522 Scalars and Pseudoscalars; Polar
and Axial Vectors. . ........ ... ... ... 56
523 Transformation Properties of Physical Quantities . ... 57
5.3 Invariant Decomposition of a 2nd Rank Tensor ......... ... 59
5.3.1 Spherical or Irreducible Tensors . ............... 59
5.3.2 Stress, Strain, and Stiffness Tensors. .. ... ........ 61
5.33 Moment of Inertia ... ....................... 64
5.3.4 The Euler Top .. ... ... ... ... .. ... ....... 66
5.35 Multipole Expansion; Quadrupole Moment . ....... 67
5.3.6 The Octupole Moment . . ..................... 69
54  Solutions . .......... ... 70
Vector Calculus. . ... ... .. .. ... .. 73
6.1  Orthogonal Curvilinear Coordinates . . ... ................ 73
6.1.1 Cylindrical and Spherical Polar Coordinates . . . . . . .. 73
6.1.2 Elliptic and Parabolic Coordinates . . . . ........... 76
6.1.3 Polar Coordinates in d Dimensions . . ............ 77
6.2  Scalar and Vector Fields and Their Derivatives .......... .. 79
6.2.1 The Gradient of a Scalar Field ................. 79
6.2.2 The Flux and Divergence of a Vector Field . . ... ... 81
6.2.3 The Circulation and Curl of a Vector Field . ....... 83
6.2.4 Some Physical Aspects of the Curl of a Vector
Field . ... . 86
6.2.5 Any Vector Field is the Sum of a Curl
and aGradient . . .......... . ... 88

6.2.6 The Laplacian Operator . ..................... 90



Contents xiii
6.2.7 Why Do div, curl, and del-Squared Occur
so Frequently? .. ... .. ... .. ... . .. 92
6.2.8 The Standard Identities of Vector Calculus . ....... 94
6.3  Solutions . ......... ... 94
7 A Bit of Fluid Dynamics . . .. ............. ... ... ... ... .. .. 97
7.1  Equation of Motion of a Fluid Element . .. ............... 97
7.1.1 Hydrodynamic Variables. .. ................... 97
7.1.2 Equation of Motion . ........................ 98
7.2 Flow When Viscosity Is Neglected . .................... 100
7.2.1 Euler’s Equation. . . ............. . ... ... .... 100
722 Barotropic Flow . . .. ... ... ... ... 101
723 Bernoulli’s Principle in Steady Flow .. ........... 102
724 Irrotational Flow and the Velocity Potential . . . . . ... 103
7.3 VOrtcCity. . . .o 104
7.3.1 Vortex Lines .. ......... .. ... .. .. .. ... ..... 104
732 Equations in Terms of v Alone . . .. ............. 106
7.4 Flow of a Viscous Fluid . .. ..... ... ... ... ... ... ... 107
7.4.1 The Viscous Force ina Fluid . ................. 107
7.4.2 The Navier—Stokes Equation . . ................. 108
7.5 Solutions . ........ ... 110
8 Some More Vector Calculus . . . .......... ... ... ... ... ... 113
8.1  Integral Theorems of Vector Calculus ................... 113
8.1.1 The Fundamental Theorem of Calculus .. ......... 113
8.1.2 Stokes’ Theorem . .......................... 114
8.1.3 Green’s Theorem .. ......................... 115
8.14 A Topological Restriction; “Exact” Versus
“Closed” .. ... . ... 116
8.1.5 Gauss’s Theorem . . ....... ... ... ... ........ 118
8.1.6 Green’s Identities and Reciprocity Relation ... ..... 119
8.1.7 Comment on the Generalized Stokes’ Theorem . . ... 120
8.2  Harmonic Functions ... ......... ... ... ... ... ....... 121
8.2.1 Mean Value Property ... ..................... 121
8.2.2 Harmonic Functions Have No Absolute Maxima
orMinima . . ............ ... . ... . ... 123
8.2.3 What Is the Significance of the Laplacian?. ... ... .. 124
8.3  Singularities of Planar Vector Fields . ................... 127
8.3.1 Critical Points and the Poincaré Index . . .......... 127
8.3.2 Degenerate Critical Points and Unfolding
Singularities . . .. .......... . ... 130
8.3.3 Singularities of Three-Vector Fields. . ... ......... 133
8.4 Solutions . ......... ... 133



Xiv

10

11

Contents

A Bit of Electromagnetism and Special Relativity . . . . .......... 137
9.1  Classical Electromagnetism . .. ........................ 137
9.1.1 Maxwell’s Field Equations . .. ................. 137

9.1.2 The Scalar and Vector Potentials. . .. ............ 139

9.13 Gauge Invariance and Choice of Gauge . . . ........ 140

9.1.4 The Coulomb Gauge . ....................... 142

9.1.5 Electrostatics . ... ........... ... .. 143

9.1.6 MagnetostatiCs . . . . . ... 144

9.1.7 The Lorenz Gauge . . ........................ 145

9.2 Special Relativity . ............ . ... .. ... .. 147
9.2.1 The Principle and the Postulate of Relativity . ... ... 147

9.2.2 Boost Formulas .. .............. . ... ... .... 148

9.2.3 Collinear Boosts: Velocity Addition Rule ......... 149

9.2.4 Rapidity . . ... ... .. 151

9.2.5 Lorentz Scalars and Four-Vectors . .............. 152

9.2.6 Matrices Representing Lorentz Transformations . . . . . 154

9.3  Relativistic Invariance of Electromagnetism . .............. 156
9.3.1 Covariant Form of the Field Equations . .......... 156

9.3.2 The Electromagnetic Field Tensor . ... ........... 156

933 Transformation Properties of Eand B . ........... 157

9.3.4 Lorentz Invariants of the Electromagnetic Field . . . . . 159

9.35 Energy Density and the Poynting Vector . .. ....... 160

9.4  Solutions . ........... ... 160
Linear Vector Spaces . ............ ... ... ... . ....... ... 163
10.1 Definitions and Basic Properties ....................... 163
10.1.1  Definition of a Linear Vector Space. .. ........... 163

10.1.2  The Dual of a Linear Space ................... 164

10.1.3  The Inner Product of Two Vectors .............. 165

10.1.4  Basis Sets and Dimensionality. . ... ............. 165

10.2  Orthonormal Basis Sets. . . ............. . ... .. ....... 167
10.2.1  Gram—Schmidt Orthonormalization . ............. 167

10.2.2  Expansion of an Arbitrary Vector ............... 169

10.2.3  Basis Independence of the Inner Product . . ... ... .. 170

10.3  Some Important Inequalities .. ........................ 171
10.3.1  The Cauchy—Schwarz Inequality . ............... 171

10.3.2  The Triangle Inequality. . ..................... 173

10.3.3  The Gram Determinant Inequality . ... ........... 173

104 Solutions . ............ ... ... 174
A Look at Matrices. . . ............ ... ... ... ... ... ... 177
11.1 Pauli Matrices. . . . ... . 177
11.1.1  Expansion of a (2 X 2) Matrix ................. 177

11.1.2  Basic Properties of the Pauli Matrices . ........... 178



Contents

12

XV
11.2 The Exponential of a Matrix . ......................... 180
11.2.1  Occurrence and Definition. . . .. .......... ... .. 180
11.2.2  The Exponential of an Arbitrary (2 x 2) Matrix . . . . . 181
11.3 Rotation Matrices in Three Dimensions . ................. 183
11.3.1  Generators of Infinitesimal Rotations and Their
Algebra . . ... . 183
11.3.2  The General Rotation Matrix. ... ............... 186
11.3.3  The Finite Rotation Formula for a Vector ......... 189
11.4 The Eigenvalue Spectrum of a Matrix ................... 190
11.4.1  The Characteristic Equation. . . . ................ 190
11.42  Gershgorin’s Circle Theorem. . .. ....... ... ... .. 191
11.4.3  The Cayley—Hamilton Theorem................. 193
11.4.4  The Resolvent of a Matrix .................... 194
11.5 A Generalization of the Gaussian Integral ................ 195
11.6 Inner Product in the Linear Space of Matrices ............. 196
11.7 Solutions . ........ ... 197
More About Matrices . . ............. ... ... . ... ... 201
12.1 Matrices as Operators in a Linear Space. ... .............. 201
12.1.1  Representation of Operators . .................. 201
12.1.2  Projection Operators . . . ..............vuuo... 202
12.2  Hermitian, Unitary, and Positive Definite Matrices . ... ... ... 204
12.2.1  Definitions and Eigenvalues ................... 204
12.2.2  The Eigenvalues of a Rotation Matrix in d
Dimensions .. ........... ... 205
12.2.3  The General Form of a (2 x 2) Unitary Matrix ... .. 206
12.3 Diagonalization of a Matrix and all That .. ......... ... .. 208
12.3.1  Eigenvectors, Nullspace, and Nullity . ............ 209
12.3.2  The Rank of a Matrix and the Rank-Nullity
Theorem . ..... ... ... ... .. . . 210
12.3.3  Degenerate Eigenvalues and Defective Matrices . . . . . 211
12.3.4  When Can a Matrix Be Diagonalized?. ... ... ... .. 212
12.3.5  The Minimal Polynomial of a Matrix. . ........... 213
12.3.6  Simple Illustrative Examples . . . .. .............. 214
12.3.7  Jordan Normal Form. ........................ 217
12.3.8  Other Matrix Decompositions . .. ............... 219
12.3.9  Circulant Matrices .. ........................ 219
12.3.10 A Simple Illustration: A 3-state Random Walk. . . . .. 221
12.4 Commutators of Matrices . ........................... 223
12.4.1  Mutually Commuting Matrices in Quantum
Mechanics . .. ... .. ... .. 223

12.4.2  The Lie Algebra of (n x n) Matrices . .. .......... 224



Xvi

13

14

Contents
12.5 Spectral Representation of a Matrix . .. .................. 227
12.5.1 Right and Left Eigenvectors of a Matrix .......... 227
12.5.2  Anlustration . ......... ... .. ... ... ...... 229
12,6 Solutions . .......... ... .. 232
Infinite-Dimensional Vector Spaces . . ... .................... 239
13.1 The Space ¢, of Square-Summable Sequences ............. 239
13.2 The Space £, of Square-Integrable Functions. .. ........... 241
132.1 Definition of Lo . ....... ... 241
13.2.2  Continuous Basis . . ....... ... ... . . oL 241
13.2.3  Weight Functions: A Generalization of £, . ........ 243
1324  L5(—o0, oo) Functions and Fourier Transforms. . . . . 245
13.2.5 The Wave Function of a Particle . . . ............. 246
13.3 Hilbert Space and Subspaces . . . ....................... 248
133.1 Hilbert Space . . .......... ... ... ... ... .. ... 248
13.3.2  Linear Manifolds and Subspaces . ... ............ 249
13.4 Solutions . .............. .. .. 250
Linear Operators on a Vector Space. . ... ................... 253
14.1 Some Basic Notions . . ........... ... .. ............ 253
14.1.1  Domain, Range, and Inverse . . . ................ 253
14.1.2  Linear Operators, Norm, and Bounded Operators . . .. 254
14.2 The Adjoint of an Operator . . . . ....................... 256
14.2.1  Densely Defined Operators . ................... 257
14.2.2  Definition of the Adjoint Operator. . ............. 257
14.2.3  Symmetric, Hermitian, and Self-adjoint Operators ... 259
14.3  The Derivative Operator in L. . . ... ... 260
143.1 The Momentum Operator of a Quantum Particle . ... 260

14.3.2  The Adjoint of the Derivative Operator in
Lo(=00, 00) « ottt 261
14.3.3  When Is —i(d/dx) Self-adjoint in Ly[a, b]? ....... 263
14.3.4  Self-adjoint Extensions of Operators . ............ 264
143.5 Deficiency Indices .............. ... ... ... ... 264

143.6  The Radial Momentum Operator in d > 2
Dimensions . ........... .. .. . . .. . 266
14.4 Nonsymmetric Operators . . . .. .......oovuttneneon.. 267
1441 The Operators x£ip . ......... ... ... ... .... 267
14.42  Oscillator Ladder Operators and Coherent States . ... 269

14.43  Eigenvalues and Non-normalizable Eigenstates

ofxandp ...... . .. ... 272
14.4.4  Matrix Representations for Unbounded Operators. . .. 274

14.5 Solutions . . ....... .. .. 275



Contents

15 Operator Algebras and Identities . . ........................
Operator Algebras. . .. ... ...

16

15.1

15.2

15.3

15.4

15.5 Solutions

15.1.1
15.1.2

The Heisenberg Algebra . .. ...................
Some Other Basic Operator Algebras. . ...........

Useful Operator Identities ... .........................

15.2.1
15.2.2
15.2.3

15.2.4
15.2.5

Perturbation Series for an Inverse Operator . .......
Hadamard’s Lemma . . .. .....................
Weyl Form of the Canonical Commutation

Relation. . ... ... .. ... ... ... ...
The Zassenhaus Formula. . . ...................
The Baker—Campbell-Hausdorff Formula. . ... ... ..

Some Physical Applications. . .. .......................

15.3.1
15.3.2
15.3.3
153.4
15.3.5
15.3.6

Angular Momentum Operators . ................
Representation of Rotations by SU(2) Matrices . . . . .
Connection Between the Groups SO(3) and SU(2). . .
The Parameter Space of SU(2) .................
The Parameter Space of SO(3) .................
The Parameter Space of SO(2) .. ...............

Some More Physical Applications ... ...................

15.4.1
15.4.2

15.4.3
15.4.4
15.4.5

The Displacement Operator and Coherent States . . . .
The Squeezing Operator and the Squeezed

Vacuum. .. ...
Values of z That Produce Squeezing in xorp . ... ..
The Squeezing Operator and the Group SU(1,1) . . ..
SU(1,1) Generators in Terms of Pauli Matrices . . . . .

Orthogonal Polynomials ... .......... ... ... ... ..........
General Formalism . . ...............................

16.1

16.2

16.1.1
16.1.2
16.1.3
16.1.4
16.1.5

Expansion and Inversion Formulas ..............
Uniqueness and Explicit Representation. . .. .......
Recursion Relation . . . ..... ... ... ... ... ...,

The Classical Orthogonal Polynomials . . .................

16.2.1
16.2.2
16.2.3
16.2.4
16.2.5
16.2.6
16.2.7
16.2.8

Polynomials of the Hypergeometric Type. . ........
The Hypergeometric Differential Equation . ... .. ...
Rodrigues Formula and Generating Function . . ... ..
Class I. Hermite Polynomials . .................
Linear Harmonic Oscillator Eigenfunctions ... .....
Oscillator Coherent State Wave Functions . ... ... ..
Class II. Generalized Laguerre Polynomials . . . ... ..
Class III. Jacobi Polynomials . .................

Xvii

281
281
281
283
285
286
286

288
288
289
290
290
292
294
296
298
301
303
303



Xviii

17

18

16.3 Gegenbauer Polynomials . . .. ......................
16.3.1  Ultraspherical Harmonics ..................
16.3.2  Chebyshev Polynomials of the Ist Kind. .. ... ..
16.3.3  Chebyshev Polynomials of the Second Kind . . ..
16.4 Legendre Polynomials. ...........................
16.4.1 Basic Properties . .. ............. .. ... ....
1642  P,(x) by Gram—Schmidt Orthonormalization . . . .
16.4.3  Expansion in Legendre Polynomials ..........
16.4.4  Expansion of x" in Legendre Polynomials . . . . ..
16.4.5 Legendre Function of the Second Kind ... ... ..
16.4.6  Associated Legendre Functions . . .. ..........
16.4.7  Spherical Harmonics. . .. ..................
16.4.8  Expansion of the Coulomb Kernel. ... ... ... ..
16.5 Solutions . ............ ... ...

Fourier Series . ... ... ... ... . ... . .
17.1 Series Expansion of Periodic Functions . ..............
17.1.1  Dirichlet Conditions . ... ..................
17.1.2  Orthonormal Basis . ......................
17.1.3  Fourier Series Expansion and Inversion Formula . . . .
17.1.4  Parseval’s Formula for Fourier Series .........
17.1.5  Simplified Formulas When (a, b) = (—m, 7) .. ..
17.2  Asymptotic Behavior and Convergence . ..............
17.2.1  Uniform Convergence of Fourier Series........
17.2.2  Large-n Behavior of Fourier Coefficients . . ... ..
17.2.3  Periodic Array of ¢-Functions: The Dirac Comb . . . .
17.3  Summation of Series. ... ....... ... ... . ... ... ....
17.3.1  Some Examples . ........................
17.3.2  The Riemann Zeta Function {(2k)............
17.3.3  Fourier Series Expansions of cos ox and sin ox . .
174 Solutions . .......... . . ...

Fourier Integrals. . . ............ ... ... .............
18.1 Expansion of Nonperiodic Functions . ................
18.1.1  Fourier Transform and Inverse Fourier Transform . . .
18.1.2  Parseval’s Formula for Fourier Transforms. . . . . .
18.1.3  Fourier Transform of the J-Function . .........
18.1.4  Examples of Fourier Transforms . ... .........
18.1.5 Relative “Spreads” of a Fourier Transform Pair . .
18.1.6  The Convolution Theorem .................
18.1.7  Generalized Parseval Formula . . .. ...... ... ..
18.2  The Fourier Transform Operator in £y .. ..............
18.2.1  TIterates of the Fourier Transform Operator . . . . . .
18.2.2  Eigenvalues and Eigenfunctions of F ... ......

Contents

L. 342

... 373



Contents Xix

19

20

18.2.3  The Adjoint of an Integral Operator. . ... ......... 384
18.2.4  Unitarity of the Fourier Transformation . . . ... ... .. 385
18.3 Generalization to Several Dimensions . .................. 385
18.4 The Poisson Summation Formula. . .. ................... 386
18.4.1  Derivation of the Formula. . .. ................. 387
18.4.2  Some Illustrative Examples . . ... ............... 388
18.4.3  Generalization to Higher Dimensions. . ... ... ... .. 391
185 Solutions . ........... ... 391
Discrete Probability Distributions . . . . ................... ... 393
19.1 Some Elementary Distributions . .. ........... ... ... ... 393
19.1.1 Mean and Variance. . . ....................... 393
19.1.2  Bernoulli Trials and the Binomial Distribution . . . . . . 395
19.1.3  Number Fluctuations in a Classical Ideal Gas. . . . . .. 397
19.1.4  The Geometric Distribution. . . ................. 398
19.1.5  Photon Number Distribution in Blackbody
Radiation . ............. . ... .. ........... 399
19.2  The Poisson Distribution . . . .......................... 402
19.2.1  From the Binomial to the Poisson Distribution . . . . . . 402
19.2.2  Photon Number Distribution in Coherent
Radiation . ....... . ... .. ... ... ... ... . ... 403
19.2.3  Photon Number Distribution in the Squeezed
Vacuum State. . ... ... ... 405
19.2.4  The Sum of Poisson-Distributed Random
Variables . . .. ... ... .. 406
19.2.5  The Difference of Two Poisson-Distributed
Random Variables .. ........................ 407
19.3 The Negative Binomial Distribution. . ... ................ 410
19.4 The Simple Random Walk ........................... 412
19.4.1 Random Walk on a Linear Lattice. . ... .......... 412
19.42  Some Generalizations of the Simple Random
Walk . .. 415
19.5 Solutions . ........ .. 415
Continuous Probability Distributions . . ..................... 421
20.1 Continuous Random Variables. ... ............... ... ... 421
20.1.1  Probability Density and Cumulative Distribution . ... 421
20.1.2  The Moment-Generating Function . . .. ....... .. .. 422
20.1.3  The Cumulant-Generating Function . . ... ... ... ... 424
20.1.4  Application to the Discrete Distributions . ... ... ... 425
20.1.5  The Characteristic Function. . . ................. 426

20.1.6  The Additivity of Cumulants. . . ........... ... .. 427



XX

21

20.2

20.3

20.4

20.5

20.6

20.7

Contents

The Gaussian Distribution . . .. ...... ... ... ............
20.2.1  The Normal Density and Distribution ............
20.2.2  Moments and Cumulants of a Gaussian

Distribution . . .......... .. .. ...
20.2.3  Simple Functions of a Gaussian Random Variable . . .
20.2.4  Mean Collision Rate in a Dilute Gas . . .. .........
The Gaussian as a Limit Law . ... .....................
20.3.1 Linear Combinations of Gaussian Random

Variables . .. ... .. ... . ... ... ...
20.3.2  The Central Limit Theorem. . ..................
20.3.3  An Explicit Illustration of the Central Limit

Theorem . ......... .. ... .. ... ... ... . ... ...
Random Flights . ... ... ... ... .. .. ... . ... ... ... ...
20.4.1  From Random Flights to Diffusion ..............
20.4.2  The Probability Density for Short Random Flights . . .
The Family of Stable Distributions .. ...................
20.5.1  What Is a Stable Distribution?. . . ... ............
20.5.2  The Characteristic Function of Stable Distributions. . .
20.5.3  Three Important Cases: Gaussian, Cauchy,

and Lévy . . . ...
20.5.4  Some Connections Between the Three Cases . . .. ...
Infinitely Divisible Distributions . ......................
20.6.1  Divisibility of a Random Variable . . .. ......... ..
20.6.2  Infinite Divisibility Does Not Imply Stability . . ... ..
Solutions . .. ... . ...

Stochastic Processes . . ........... .. .. . . ... ...

21.1
21.2

21.3
21.4

21.5

Multiple-Time Joint Probabilities . . . ....................
Discrete Markov Processes ... ........................
21.2.1  The Two-Time Conditional Probability ...........
21.2.2  The Master Equation . ........... ... .. ... ...
21.2.3  Formal Solution of the Master Equation. . . ... ... ..
21.2.4  The Stationary Distribution . . . .. ...............
21.2.5 Detailed Balance ............. ... .. ... .. ...
The Autocorrelation Function . ... .....................
The Dichotomous Markov Process. . . ...................
21.4.1  The Stationary Distribution . . . .................
21.42  Solution of the Master Equation ... .............
Birth-and-Death Processes . . . .. .......................
21.5.1  The Poisson Pulse Process and Radioactive Decay . . .
21.5.2  Biased Random Walk on a Linear Lattice .........
21.5.3  Connection with the Skellam Distribution . ........
21.5.4  Asymptotic Behavior of the Probability . . ... ... ...



Contents

22

23

XXi
21.6  Continuous Markov Processes . . .. ..................... 481
21.6.1  Master Equation for the Conditional Density . . ... .. 481
21.6.2  The Fokker—Planck Equation. . ... .............. 482
21.6.3  The Autocorrelation Function for a Continuous
Process . ... ... ... ... 484
21.7 The Stationary Gaussian Markov Process . . ... ............ 485
21.7.1  The Ornstein—Uhlenbeck Process. .. ............. 485
21.7.2  The Ornstein—Uhlenbeck Distribution . ........... 486
21.7.3  Velocity Distribution in a Classical Ideal Gas . ... .. 488
21.7.4  Solution for an Arbitrary Initial Velocity
Distribution . . ......... . ... .. 490
21.7.5  Diffusion of a Harmonically Bound Particle . . . . . ... 490
21.8 Solutions . ........... ... 492
Analytic Functions of a Complex Variable . . .............. ... 495
22.1 Some Preliminaries . . .. .............. .. ... . . . ..., 495
22.1.1  Complex Numbers . . .......... ... ... ... ... 495
22.1.2  Equations to Curves in the Plane in Terms of z . . . .. 497
22.2 The Riemann Sphere. . ... ....... ... ... ............. 497
22.2.1  Stereographic Projection . . .................... 497
2222 Maps of Circles on the Riemann Sphere . ....... .. 500
22.2.3 A Metric on the Extended Complex Plane . . . ... . .. 501
22.3 Analytic Functionsof z....... .. ... ... ... ., 503
22.3.1  The Cauchy—Riemann Conditions . .............. 503
22.3.2  The Real and Imaginary Parts of an Analytic
Function . ....... ... ... . ... . .. ... .. 505
22.4  The Derivative of an Analytic Function . . . ......... ... .. 506
22.5 Power Series as Analytic Functions . ... ................. 508
22.5.1 Radius and Circle of Convergence. . ............. 508
2252  An Instructive Example ............ ... ... ... 509
22.5.3  Behavior on the Circle of Convergence ... ... ... .. 512
2254 Lacunary Series ................... ... .. .... 513
22.6 Entire Functions . .. ............... ... 514
22.6.1  Representation of Entire Functions .............. 514
22.6.2  The Order of an Entire Function . . .............. 515
227 Solutions . ... 517
More on Analytic Functions . . . ........ ... ... ... ..... ... 521
23.1 Cauchy’s Integral Theorem . .......................... 521
23.2 Singularities . ... ... 522
23.2.1  Simple Pole; Residue ata Pole . ................ 522
2322 Multiplepole .. ...... .. . il 525
23.2.3  Essential Singularity . . .. ....... ... . o o L. 525

2324  Laurent Series .. ........ ... ... 526



xxii

24

25

Contents
23.2.5 Singularity at Infinity ... ......... ... ... ... .. 527
23.2.6  Accumulation Points. . .. ......... ... ... . ... 528
23.27  Meromorphic Functions . ..................... 529
23.3 Contour Integration. . . .......... ... ... 531
233.1 ABasicFormula ....... ... ... ... ... .. .. 531
23.3.2  Cauchy’s Residue Theorem. ... ................ 532
23.3.3  The Dirichlet Integral; Cauchy Principal Value. . . . .. 534
23.3.4  The “ie-Prescription” for a Singular Integral. .. ... .. 536
23.3.5 Residue at Infinity .. ........................ 538
23.4 Summation of Series Using Contour Integration . . .......... 540
23.5 Linear Recursion Relations with Constant Coefficients . . .. . .. 543
23.5.1  The Generating Function. . . ................... 543
23.5.2  Hemachandra-Fibonacci Numbers . ... ......... .. 545
23.5.3 Catalan Numbers .. ......................... 546
23.5.4  Connection with Wigner’s Semicircular
Distribution . . ......... ... ... 548
23.6 Mittag-Leffler Expansion of Meromorphic Functions. . . ... ... 549
2377 SOlutions . ......... ... 552
Linear Response and Analyticity. . . . ....................... 561
24.1 The Dynamic Susceptibility. ... .......... ... ... ... ... 561
24.1.1  Linear, Causal, Retarded Response . ............. 561
24.1.2  Frequency-Dependent Response ................ 562
24.1.3  Symmetry Properties of the Dynamic
Susceptibility . ............ . ... . . . ... 564
242 Dispersion Relations . .. ........... ... ... o L. 565
24.2.1  Derivation of the Relations . .. ................. 565
24.2.2  Complex Admittance of an LCR Circuit . ......... 568
24.2.3  Subtracted Dispersion Relations . ............... 570
24.2.4  Hilbert Transform Pairs. . . .................... 571
24.2.5 Discrete and Continuous Relaxation Spectra. . . ... .. 573
243 SOIUHONS . ..ot 575
Analytic Continuation and the Gamma Function . ... ....... ... 577
25.1 Analytic Continuation . . .. ..ot .. 577
25.1.1  What Is Analytic Continuation?. . ............... 577
25.1.2  The Permanence of Functional Relations . ... ... ... 579
25.2 The Gamma Function for Complex Argument ............. 581
25.2.1  Stripwise Analytic Continuation of I'(z) .......... 581
25.2.2  Mittag-Leffler Expansion of I'(z). ............... 584
25.2.3  Logarithmic Derivative of T'(z) ... .............. 584
25.2.4  Infinite Product Representation of I'(z) ........... 585
25.2.5 Connection with the Riemann Zeta Function . ... ... 586

25.2.6 The Beta Function . ......................... 588



Contents XXiii

26

27

28

25.2.7  Reflection Formula for I'(z) ................... 590
25.2.8 Legendre’s Doubling Formula. .. .......... ... .. 591
25.3 Solutions . . ... ... 592
Multivalued Functions and Integral Representations . .......... 595
26.1 Multivalued Functions. . .. ........................... 595
26.1.1  Branch Points and Branch Cuts. .. .............. 595
26.1.2  Types of Branch Points. . .. ................... 597
26.1.3  Contour Integrals in the Presence of Branch
Points .. ... ... .. .. 599
26.2 Contour Integral Representations . .. .................... 602
26.2.1 The Gamma Function . . ...................... 602
26.2.2 The Beta Function . ......................... 604
26.2.3  The Riemann Zeta Function . .................. 605
26.2.4  Connection with Bernoulli Numbers . ............ 607
26.2.5  The Legendre Functions P,(z) and Q,(z).......... 609
26.3 Singularities of Functions Defined by Integrals. . ... ... ... .. 613
26.3.1  End Point and Pinch Singularities . ... ........... 613
26.3.2  Singularities of the Legendre Functions . . .. ....... 617
26.4  SOIUtioNS . .. ... .. ... 618
Moébius Transformations. . . .............................. 623
27.1 Conformal Mapping . ............................... 623
27.2 Mobius (or Fractional Linear) Transformations . . ... ........ 624
27.2.1 Definition. . .. ........ ... ... ... 624
2722 FixedPoints. . ........... .. .. .. ... ... . ..... 625
27.2.3  The Cross-Ratio and Its Invariance . ............. 626
27.3 Normal Form of a Mébius Transformation . . ... ........... 629
27.3.1 Normal Forms in Different Cases ............... 629
27.3.2  Tterates of a Mdbius Transformation .. ........... 630
27.3.3  Classification of Mobius Transformations. . .. ... ... 632
2734 TheIsometric Circle . . . ...................... 634
27.4 Group Properties. . . .......... ... .. 635
27.4.1 The Mobius Group . . ... ......... ... ... .. 635
27.4.2  The Mdbius Group Over the Reals . ............. 637
27.4.3  The Invariance Group of the Unit Circle . ......... 638
27.4.4  The Group of Cross-Ratios . . . ........... ... ... 639
27.5 Solutions . ....... .. ... 640
Laplace Transforms ... .......... ... ..................... 645
28.1 Definition and Properties . . . ............ . ... ... ...... 645
28.1.1  Definition of the Laplace Transform ........... .. 645

28.1.2  Transforms of Some Simple Functions. . . ... ... ... 646



XXiv

29

30

Contents

28.1.3  The Convolution Theorem . ...................

28.1.4  Laplace Transforms of Derivatives ..............

28.2 The Inverse Laplace Transform ... .....................

28.2.1 The Mellin Formula . . ......... ... ... ... ...

28.2.2  LCR Circuit Under a Sinusoidal Applied Voltage. . . .

28.3 Bessel Functions and Laplace Transforms ................
28.3.1 Differential Equations and Power Series

Representations . ...........................

28.3.2  Generating Functions and Integral Representations . . .

28.3.3  Spherical Bessel Functions .. ................ ..

28.3.4  Laplace Transforms of Bessel Functions . ....... ..

28.4 Laplace Transforms and Random Walks ........... ... ...

28.4.1 Random Walk in d Dimensions. . . ..............

28.4.2  The First-Passage-Time Distribution .............

28.5 SOIUHONS . . ..ot

Green Function for the Laplacian Operator . . . ... .......... ..
29.1 The Partial Differential Equations of Physics . .............
29.2 Green Functions . .. ................. i
29.2.1  Green Function for an Ordinary Differential
Operator .. ....... ..
29.2.2  An Illustrative Example ... ....... ... ... ... ..
29.3 The Fundamental Green Function for V2 ... ... .. ... ......
29.3.1  Poisson’s Equation in Three Dimensions . . ........
29.3.2  The Solution for GO (r,x/). .. .................
29.3.3  Solution of Poisson’s Equation ... ..............
29.3.4  Connection with the Coulomb Potential . . . ........
29.4 The Coulomb Potential in d > 3 Dimensions . .. ...........
29.4.1  Simplification of the Fundamental Green Function . . .
29.42  Power Counting and a Divergence Problem . . . ... ..
29.4.3  Dimensional Regularization. ... ................
2944 A Direct Derivation .. .......................
29.5 The Coulomb Potential in d = 2 Dimensions . .. ...........
29.5.1 Dimensional Regularization. . ... ...............
29.5.2 Direct Derivation .. ............. .. ... ... ....
29.5.3  An Alternative Regularization . . . ...............
20.6  SOIULONS . . ...

The Diffusion Equation . . . . ..............................
30.1 The Fundamental Gaussian Solution . ...................
30.1.1  Fick’s Laws of Diffusion .....................
30.1.2  Further Remarks on Linear Response ............
30.1.3  The Fundamental Solution in d Dimensions. . ... ...

665

686



Contents XXV

31

32

30.1.4  Solution for an Arbitrary Initial Distribution. . . ... .. 693
30.1.5 Moments of the Distance Travelled in Time ¢ . . .. .. 694
30.2 Diffusion in One Dimension . ......................... 695
30.2.1  Continuum Limit of a Biased Random Walk . ... ... 695
30.2.2  Free Diffusion on an Infinite Line . . ............. 697
30.2.3  Absorbing and Reflecting Boundary Conditions . . . . . 698
30.2.4  Finite Boundaries: Solution by the Method
of Images. ....... ... . .. ... 699
30.2.5  Finite Boundaries: Solution by Separation
of Variables . . . ..... ... ... .. ... .. o L 701
30.2.6  Survival Probability and Escape-Time
Distribution . . ... ... ... 702
30.2.7  Equivalence of the Solutions . . .. ............... 704
30.3 Diffusion with Drift: Sedimentation .. ................... 706
30.3.1 The Smoluchowski Equation. . ............... .. 706
30.3.2  Equilibrium Barometric Distribution .......... ... 707
30.3.3 The Time-Dependent Solution. .. ............... 708
30.4 The Schrodinger Equation for a Free Particle . ... .......... 710
30.4.1  Connection with the Free-Particle Propagator . . . . . .. 710
30.4.2  Spreading of a Quantum Mechanical Wave
Packet . ..... ... ... .. 711
30.4.3 The Wave Packet in Momentum Space . .......... 714
30.5 Solutions . ........ .. 715
The Wave Equation . .. .......... ... ... ................ 719
31.1 Causal Green Function of the Wave Operator. . . ... ........ 719
31.1.1  Formal Solution as a Fourier Transform. .. ... ... .. 719
31.1.2  Simplification of the Formal Solution ............ 722
31.2 Explicit Solutions ford =1,2and 3.................... 724
31.2.1  The Green Function in (1+ 1) Dimensions ... ... .. 724
31.2.2  The Green Function in (2+ 1) Dimensions . ....... 725
31.2.3  The Green Function in (3+ 1) Dimensions . ....... 727
31.2.4  Retarded Solution of the Wave Equation . ... ... ... 728
31.3 Remarks on Propagation in Dimensions d >3 ... ....... ... 729
314 Solutions . ......... ... 731
Integral Equations . .............. ... ... ... ... ... ... ... 733
32.1 Fredholm Integral Equations . ......................... 733
32.1.1  Equation of the First Kind . ................... 733
32.1.2  Equation of the Second Kind ............... ... 734
32.1.3 Degenerate Kernels. .. ....................... 736
32.1.4  The Eigenvalues of a Degenerate Kernel . . ... ... .. 737
32.1.5 TIterative Solution: Neumann Series . ............. 738

32.2 Nonrelativistic Potential Scattering. . ... ................. 741



XXVi

323

324

325
32.6

32.2.1  The Scattering Amplitude . . .. ..............
32.2.2  Integral Equation for Scattering . . .. ..........
32.2.3  Green Function for the Helmholtz Operator . . . . .
32.2.4  Formula for the Scattering Amplitude . ........
32.2.5 The Born Approximation ..................

32.2.6  Yukawa and Coulomb Potentials; Rutherford’s

Formula....... ... ... ... ... ... .........
Partial Wave Analysis. . ..........................
32.3.1  The Physical Idea Behind Partial Wave Analysis . . . .

32.3.2  Expansion of a Plane Wave in Spherical

Harmonics . .. ........ ... .. ... .. .. ......

32.3.3  Partial Wave Scattering Amplitude and Phase

Shift . ... .. .
32.34  The Optical Theorem . . ...................
The Fredholm Solution . .. ........................
32.4.1 The Fredholm Formulas . ..................

32.4.2  Remark on the Application to the Scattering

Problem...... ... ... ... ... ...
Volterra Integral Equations . ... ....................
Solutions . ........... .

Contents



About the Author

Prof. V. Balakrishnan is currently an Adjunct Professor of Physics at the Indian
Institute of Technology (IIT) Madras. He joined the Indian Institute of Technology
Madras as a Professor in 1980, and retired as Professor Emeritus in December 2013.
He was educated at the University of Delhi and received his PhD in theoretical high
energy physics from Brandeis University, USA in 1970. He joined IIT Madras after
working for a decade at TIFR (Mumbai) and RRC, DAE (Kalpakkam). His research
interests have spanned many areas including particle physics, many-body theory,
condensed matter physics, stochastic processes, quantum dynamics, nonlinear
dynamics and chaos. He has published numerous research papers in these areas and
a number of popular pedagogic articles. He has co-authored a monograph titled
Beyond the Crystalline State and authored a monograph titled Elements of
Non-equilibrium Statistical Mechanics. Over nearly four decades, he has taught a
wide variety of extremely popular courses at the undergraduate, postgraduate and
doctoral levels, comprising all the standard subjects in physics as well as some new
and non-traditional ones. He has received high accolades for his teaching at IIT
Madras, and his lectures at numerous courses sponsored by the UGC, DST (SERC)
and ICTP (Trieste, Italy) have been well-received by their attendees. His video
lecture courses under the auspices of the NPTEL programme of the HRD Ministry
(available on YouTube) have received very high acclaim. He has held visiting
positions at several institutions abroad. He is a Fellow of the Indian Academy of
Sciences.

XXVii



Chapter 1 ®)
Warming Up: Functions of a Real I
Variable

1.1 Sketching Functions

1.1.1 Features of Interest in a Function

Sketching functions schematically is one of the most basic skills that is required
of any student of science or technology. The visual impact of a plot or graph is
considerable. It enables us to understand, at a glance, a good deal about the essential
structure of any given functional form. Of course, we can always write a program to
plot a given function, or use readily available packages for this purpose. But this is
not always as instructive as sketching the functions involved in the formulas. Doing
so provides insight into the nature of results derived by more formal considerations.

Most functions are nonlinear, i.e., they have shapes that are far more interesting
than a mere straight line. Given any formula or functional form that occurs in an
application, you should be able to sketch the function gualitatively, such that its
main features and interesting aspects are brought out. In particular, this includes its

— Zeroes;
— maxima and minima;

— inflection points or points where the curvature of the function changes sign;
— asymptotes;

— discontinuities;

— infinities or divergences;

— its behavior near x = 0, i.e., for small values of the argument;

— its behavior as x — $00, i.e., for very large values of the argument;

and so on.

It is also important to learn to generalize, that is, to draw conclusions that can take
one from particular cases to general results. This implies that you must develop the
ability to distinguish between specific details and general features. One way to do this
is to try to regard, wherever possible, the specific problem at hand as a member of a

© Authors 2020 1
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family of similar problems: that is, you must attempt to imbed the problem in a general
framework. This is very helpful in putting the problem in a proper perspective. Let
us begin with three very simple examples of this approach.

1.1.2 Powers of x

We know that the graph of y = x is a straight line, while x? is a quadratic function
of x, x is a cubic function, and so on. It is interesting to consider these as members
of the family of functions x“, and to draw them on the same plot. Figure 1.1 shows
the cases when « is equal to the positive integers 1, 2, and 3 in the region x > 0.
Note how the function gets flatter at the origin, while it increases more steeply for
x > 1, with increasing «. The functions x® for a = % is also drawn on the same
plot. Note how, as « decreases below the value 1, the function now gets steeper
at the origin, while increasing less rapidly for x > 1. All the curves above pass
through the point (1, 1) in the plot, enabling an instructive comparison to be made.
Clearly, the features just described are applicable to the function x“ for any positive
exponent «, not necessarily integral or rational, in the region x > 0. The straight line
graph corresponding to the value o = 1 separates two qualitatively different kinds
of behavior.

1.1.3 A Family of Ovals

As you know, the equation x?/a® 4+ y?/b?> = 1 where a and b are positive constants
represents an ellipse centered at the origin, with its principal axes along the x and
y axes. The semi-major axis is a, and the semi-minor axis is b. Now consider the
family of functions given by the equation

Fig. 1.1 Plots of x for 4
o= %, 1, 2 and 3. The value

of «v is indicated in each case 1

%
1
" 2
3
0 1
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Fig. 1.2 Plots of the family
of closed curves in Eq.(1.1) b
witha > b > 0. Values of

the parameter « are indicated

4
2
1
%
a\ | :;
—b

X |« Y|«
Al R A 1.1
‘a +’b 4.

where « is a positive number. It is easy to see that the graph is a simple closed curve
that is symmetric with respect to reflections about both the coordinate axes. It is also
confined to the rectangle formed by the straight lines x = +a and y = £b. Figure 1.2
depicts the family for the parameter values « = 1, 2, and 4, and also for o = % As «
increases, the “oval” bulges out toward the rectangle. The rectangle may be regarded
as the limiting curve in the limit &« — oo. Similarly, as « decreases, the curve shrinks
toward the axes, which may be regarded as the limiting curves in the limit o — 0.
Once again, the case oo = 1 separates two qualitatively different kinds of behavior.

1.1.4 A Family of Spirals

Plane polar coordinates (g, () in the xy-plane are defined via the familiar relations
X = pcos ¢, y=psin . It is easy to see that the family of curves ¢ = a positive
constant is a set of concentric circles centered at the origin. Similarly, the family of
curves ( = a positive constant is a set of half-lines starting at the origin and tending to
infinity in different radial directions. The two families are orthogonal to each other,
i.e., they intersect at right angles. Is there any way of “going continuously” from one
family to the other by tuning some parameter?

Consider a curve such that, at each point on the curve, the tangent and radius
vector are at the same angle i with respect to each other. Clearly, 1 = 0 for the
radial lines themselves, and ) = %7r for the circles. For values of ¢ in between these
extremes, we get a family of so-called equiangular spirals whose equation is

0= 00e* "% where o = cot 1, (1.2)
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Fig. 1.3 a Orthogonal families of circles and radial lines. b An equiangular spiral

and the curve passes through any given point (g, (). Figure 1.3a shows the orthog-
onal families of circles (v = %7’1’ or a = 0) and radial lines (¢ =0 or a — 00).
Figure 1.3b shows one of the spirals that interpolates between these two families.

% 1. Schematically sketch each of the functions given below, paying attention to the
features listed in Sect. 1.1.1. Unless otherwise specified, —oo < x < 400. Wherever
the function becomes indeterminate, take the value of the function to be its limiting
value. (For example, if f(x) = (sin x)/x, take f(0) = 1.)

1 x|x]|
@ x—=Dkx—-2)/x

(7) e *cosx

(10)
13)
(16)
19)
(22)
(25)
(28)
€1V
(34)
(37)
(40)
(43)

(46)

@
&)

e ™l cos x (11)
coth x (14)
x—14+e" 17
(Inx)/x (x > 0) (20)
x/(e* = 1) (23)
(sin® x) /x> (26)
U (x > 0) 29)
(3 =2%/x (32)
4x (1 —x) 35)
Ix['2/(1 + |x['7%) (38)
X3/ +1) 41)
x2/* +1) (44)
exp (—1/x?) 47)

x|
sech x
(8) e *sin x

1/3

e Mlsin x
tanh (x2)

In x (x > 0)
x¥ (x > 0)
1/(e*+1)
x2—1De™
(x cos x —sin x)/x3
x12 6

cosh™! x

(x? —1)?

X —sin x

x7 12 e (x > 0)

a (x| < 1)
x| <
+x

2

In
1

Are there any periodic functions of x in this list?

(B) 1/&x*+1)
©) x exp(—x?)
©) /41
(12) tanh x
(15) coth x — x~!
(18) Inlnx (x > 1)
@21) x|
(24) sin (x?)
27) In(e*—1) (x > 0)
(30) (sin 3x)/sin x
(33) |x|"*/(e" + 1)
(35) coth™'x
(39) (1 —cos x)/x?
(42) exp(1/x)
(45) sin(sin x)

1—x
(48) T In - (x| < D).
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1.2 Maps of the Unit Interval

In most problems in the physical sciences, the primary question is the variation of
observable quantities as functions of time. An important fact, especially in the context
of what is known as deterministic chaos, is the following: The time variation can be
extremely complicated even when the underlying equations of motion are themselves
quite simple in appearance. Useful models of dynamical systems that display such
complex behavior are provided by relatively simple-looking functions. When the
time evolution is assumed to occur in discrete time steps, the dynamics is specified
by simply iterating such functions. In this context the functions are referred to as
maps. In other words, if x,, is the value of the variable at the nth time step, its value
after the next time step is given by x,+1 = f(x,), where f(x) is a specified function
of x. One of the simplest maps used in this context is the following:

2x,
2(1 - -x)v

(e}
[T

The symmetric tent map, f(x) = |1 —|2x — 1|| = { );

IATA

=<
< .

(1.3)
The map is depicted in Fig. 1.4. Here are some other one-dimensional maps that are
used most frequently in the study of low-dimensional dynamical systems. In each

case, the “phase space” is the unit interval 0 < x < 1.

1
2

The Bernoulli map : f(x) = 2x mod 1 = {gi_ . (%) ii 55 %1 (1.4)
The logistic map : f(x) = |1 —2x — 1|2|. (1.5)
The cuspmap : f(x) = |1 —[2x — 1]"/]. (1.6)

The Gauss map :  f(x) = P (1.7)

In Eq.(1.7), [x '] stands for the largest integer < 1/x.

Fig. 1.4 The symmetric tent 1
map of the unit interval,

Eq.(1.3). The map is onto

and noninvertible




6 1 Warming Up: Functions of a Real Variable
% 2. Schematically sketch each of the functions in Egs. (1.4)—(1.7) for x € [0, 1].

All the functions in Eqgs. (1.3)—(1.7) are onto maps of the unit interval: that is, as x
ranges over the unit interval, the value of f(x) also extends over the whole of the
unit interval. Observe that all the examples listed above are noninvertible maps,
i.e., for a given f(x) there is more than one value of x. There are two such values in
the tent, Bernoulli, logistic, and cusp maps, and an infinite number of such values in
the Gauss map.

The Bernoulli map is also known as the Bernoulli shift, for the following reason.
The action of the map is best seen by writing x in the form of a binary “decimal”,

x=0.apaiap -, (1.8)

where each of the digits g; is either O or 1. This means, of course, that the numerical
value of x is
X=—d o+t (1.9)

Hence the numerical value of f(x) is given by

a a a
f(x)=2xmod1=2—i+2—§+2—§+~-. (1.10)

As a binary “decimal”, this means that f(x) is written as
fx)=2xmod 1 =0.a,aas---, (1.11)

regardless of whether ap = 0 or 1. Thus, the effect of the map is simply to shift the
“decimal point” by one digit to the right, and to delete the digit to the left of the
decimal point. If the map is iterated, i.e., applied repeatedly to any initial value x,
more and more digits of the initial value get “lost” in this manner. This fact is of
significance in the behavior of the map as a discrete dynamical system that exhibits
chaos.

The Gauss map, shown in Fig. 1.5, is also called the continued fraction map.
The action of the map is best seen by writing x € [0, 1] as a continued fraction in
standard form, with all the numerators equal to unity and successive denominators
given by the positive integers (ag, a;, @z, ...). Thatis,

X = (1.12)
ap +
a) +

a+ -
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Fig. 1.5 The Gauss map of 1
the unit interval, Eq. (1.7).

The map has an infinite

number of branches

0 V% % 1

r—>

Then f(x) is the continued fraction with denominators given by the integers
((11, ap, a3,...),i.e.,

1 1 1 1
fx)=—-— [—} =——qy= (1.13)

X X X 1

a + ——
2 a3+...

Once again, information about the first integer aj is lost under the action of the map,
i.e., in going from x to f(x). As the map is iterated, more and more information
about the initial value is lost, as the integers a; , a;, ... are successively removed.
This loss of information is a reflection of the noninvertibility of the map. In turn, the
noninvertibility of all the onto maps listed above is closely related to their role as
simple models of chaotic dynamical behavior.



Chapter 2 ®)
Gaussian Integrals, Stirling’s Formula, st
and Some Integrals

2.1 Gaussian Integrals

2.1.1 The Basic Gaussian Integral

The function ¢, called a Gaussian, appears everywhere in the mathematical sci-

ences. It plays a fundamental role in probability and statistics. We will discuss this
aspect further in Chap.20, Sect.20.2. The fundamental Gaussian integral in its
simplest form is

I =/ dxe™ = %/ dxe™ = V. 2.1
O —

o0

The integral cannot be evaluated by the usual method of integration by parts. Its value
is determined as follows. Consider the square of the integral and change to plane
polar coordinates (o, ), where o = (x> 4+ y?)/? and ¢ = tan~'(y/x). (This trick is
attributed to Poisson.) The region of integration is the first quadrant in the xy-plane.
The area element in plane polar coordinates is o d o dp. Thus

o0 oo , ') 5 /2
I? = / dx/ dye ™ = / dope™® / dp = iw. (2.2)
0 0 0 0

Hence I = § /. It follows that

/0 dxe o = 1 / dx e = 1 fir/a), (2.3)

oo

where a is any positive constant. In fact, this remains true even if a is a complex
number, as long as Rea > 0.

© Authors 2020 9
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10 2 Gaussian Integrals, Stirling’s Formula, and Some Integrals

The simple result above has many interesting extensions that are useful in a
remarkably large number of physical problems. I shall consider here just a few of
these corollaries.

o0

% 1. Find the value of the integral / dx e~ where a > 0 and b is a real con-
—00
stant.

Hint: The result just derived is actually valid for arbitrary finite complex values of
a and b, provided only that Rea > 0. This leads to the very useful formula for a
shifted Gaussian integral:

o0
/ dx et — /(n/a) "% (Re a > 0). (2.4)

o]

Here b any complex number. It then follows that, if @ > 0 and £ is a real constant,

o0
f dx e cos kx = 1\/(w/a) e ¥ /4. (2.5)
0

% 2. Establish Eq. (2.5). Satisfy yourself that the integral fooodx e sin (kx) can-
not be evaluated by this procedure.

Some other integrals related to the Gaussian integral will be encountered in Chap. 3,
Sect.3.1.4.

2.1.2 A Couple of Higher Dimensional Examples

The generalization of the basic Gaussian integral to the multidimensional case is very
important, as it occurs in a large variety of contexts. We will consider this extension
in Chap. 11, Sect. 11.5, after matrices have been introduced. But it is instructive to
work out, here, a couple of special cases of the general result that will be given in
Eq. (11.56).

A two-dimensional Gaussian integral: The first of these is a two-dimensional inte-
gral. Let p be a constant such that —1 < p < 1. Then

o0 o0 5 N T
f dx / dy e T2y b — (2.6)
—00 —00

JI=@2

% 3. Establish Eq. (2.6).



2.1 Gaussian Integrals 11

Note that the right-hand side of Eq.(2.6), which gives the value of the integral,
becomes infinite when p = +£1.

e This divergence is a signal that the left-hand side is a convergent integral only in
the range —1 < p < 1 of the parameter .

You must understand the reason for the divergence of the integral at the values
p==1. Setting 1 =1 in the left-hand side of Eq.(2.6), the integrand becomes
exp [—(x + y)?]. Change variables of integration from (x, y) to u = (x + y) and
v = (x —y). We have

_ a(xv Y) 1
dxdy = ‘8(14, %) dudv = 2 dudv, 2.7
where
d(x,y) _ | Ox/0u Ox/0v 2.8)
Ou,v)|  |0y/0u dy/ov '

is the determinant of the Jacobian matrix of the transformation. As the original
integral is over the whole of the xy-plane, the new range of integration is also over
the whole uv-plane. The integral then becomes

o0 2 o0
%/ due™ / dv,
—0oQ —0oQ

which is obviously infinite.
% 4. Exactly the same sort of argument can be given in the case = —1. Do so.

A three-dimensional Gaussian integral: The second example is a three-dimensional
integral. Let v be a constant such that —% < v < 1. Then

/ “ax / “dy / Tz e L T o)
o Jeoo T Joo (1 —=v)/14+2v

% 5. Establish Eq. (2.9).

% 6. As before, the right-hand side of Eq.(2.9) suggests that the integral on the
left-hand side diverges when v = 1 and also when v = —%.

(a) Give a reason why this should be so, on the lines of the argument I have given
above in the case of Eq.(2.6) at the parameter values p = £1.

(b) The divergence at v = —% is of the inverse square root type, arising from the
factor (1 +2v)~!/2. In contrast, the divergence at v = 1 is a “stronger” one,

since it arises from the factor (1 — )~!. Why should this be so? (The precise
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reason for this difference will become clear after we discuss the general formula
for a Gaussian integral in Chap. 11, Sect. 11.5.)

2.2 Stirling’s Formula

The Gaussian integral is useful, for instance, in deriving the famous result known
as Stirling’s formula for the factorial (or the logarithm of the factorial) of a large
positive integer 7.

It is obvious that n! is a very rapidly increasing function of #n. It takes only a few
seconds to establish that 69 is the largest integer whose factorial can be found with a
standard pocket calculator, since 69! &~ 1 - 7 x 10°® and 70! exceeds 10%° (the display
capacity of an ordinary calculator). The crudest estimate for n! would be n". But this
is obviously an overestimate, because n! = n(n — 1)(n — 2) - - - 1. An approximate
expression for n is readily obtained by an elementary argument, by considering the
logarithm of n! rather than n! itself. We have In n! = > _;_, In k. For sufficiently
large n, this can be approximated by the integral fond t In t = n In(n/e). Therefore
nlanp"e™".

To make this reasoning more systematic and accurate, a convenient starting point
is the integral

o0
/ dtt"e ' =n!, (2.10)
0

where n is a positive integer. (Incidentally, setting n = O on the left-hand side yields
1 as the value of the integral. This result enables us to define 0! as 1.) Now, " is a
rapidly increasing function of  for large n, while e~ is a rapidly decreasing function
of t. The product of the two factors is a function that starts at 0 when ¢ = 0 and peaks
to a maximum value, and then drops to zero as t — oo. (Draw a schematic sketch of
the function.) The peak gets more and more pronounced as n increases. The integrand
essentially looks like a bell-shaped curve, a Gaussian. The contribution to the definite
integral then comes mainly from the immediate neighborhood of the peak. The trick,
then, is to (i) approximate the integrand by a Gaussian centered about the maximum
of the integrand, and (ii) extend the range of integration from —oo to co. The outcome
is

n! >~ n"e " 2rmn. ‘ (2.11)

This is Stirling’s approximation or Stirling’s formula. The corrections to it will
become clear in Eq. (2.13) below.

% 7. Derive the formula (2.11).
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Stirling’s formula is quite remarkable, because it is valid to an astonishing degree
of accuracy even for relatively small values of n. In fact, even if n is as small as 1
itself, the formula is accurate to about 1 part in 12: the values of e and 2T only
differ by about 8%, as you can check easily! When n is 10, the accuracy is already
about 99.2%, and for n = 100, this becomes 99.92%, and so on. Stirling’s formula
for the logarithm of the factorial of a large integer,

Inn!~nlinn—n+3InQmn), (2.12)

is undoubtedly familiar to you from its widespread use in statistical mechanics. The
accuracy of this formula for values of n as large as Avogadro’s number is, of course,
stupendous: it is correct to 1 part in 10?*. This estimate follows from the exact form
of Stirling’s series for n!, which reads

1 ]
l=n"e (2 1/2[1 — Yt — 4O } 2.13
at=nte " Qrm) 4 ot g TO0T) 2.13)

The curly brackets is an infinite series in powers of 1/n. It is not a convergent
power series, but rather, an asymptotic series. More precisely, Stirling’s series is
an asymptotic series for the gamma function, which we shall consider in Chap. 3,
Sect. 3.1.4, and again in Chaps. 25 and 26. The numerical coefficients in the series are
explicitly known in terms of the Bernoulli numbers. We will have occasion to define
these numbers in Chap.26, Sect.26.2.4. An important property of an asymptotic
series is the following: the error introduced by truncating such a series at any stage is
as small as the next term in the series. In a series such as thatin Eq. (2.13), for instance,
for each given value of n there is an integer k(n), such that the best approximation to
n! is provided by truncating the series at the kth term. Retaining terms beyond that
actually worsens the approximation.

The Gaussian approximation used above for evaluating the integral is a special
case of a general technique called Laplace’s method that is very useful in finding
asymptotic expansions of functions defined by integrals. Laplace’s method is itself
areduced form of a more general technique called the method of steepest descent or
the saddle-point method, involving integration in the complex plane.

2.3 The Dirichlet Integral and Its Descendants

Here is a very important integral, and a whole set of integrals that descend from it,
all of which can be evaluated starting from very elementary considerations.

As you know, the integral fooo dx /x does not exist, because it diverges logarithmi-
cally at both the lower and upper limits of integration: That is, if the limits had been
€ and L, respectively, the integral would have been equal to In (L /€). This becomes
infinite when either L — oo, or ¢ — 0, or both.
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What about the integral fooo dx (sin bx)/x, where b is a nonzero, real constant?
The singularity of the integrand at x = 0 is no longer present, since the integrand
tends to the finite limit b as x — 0. You might still expect the integral to diverge
logarithmically at the upper limit of integration, however, because | sin bx| is always
< 1, and the magnitude of the integrand still falls off only as slowly as 1/x for
large x. The integral fooo dx |sin bx|/x is indeed divergent. Remarkably enough,
however, the fact that sin (bx) oscillates between positive and negative values saves
the situation, and makes the integral fooo dx (sin bx)/x convergent. This integral is
of great importance, as it and its relatives occur in numerous contexts. Here is one
way to compute the value of this definite integral.

We know that

(o]
1
f dx e ™ = —, for any positive constant a. (2.14)
0 a

But this result remains valid even if a is replaced by a complex number a + ib, as
long as its real part a is positive: It is only the real part that controls the convergence
of the integral, because the factor e~ihx g just the sum of a cosine and a sine, and
these are oscillatory functions of magnitude < 1. Thus

o0 : 1
/ dxe @t = —— (a>0, breal). (2.15)
0 a+ib
Equating the imaginary parts of the two sides, we get the well-known result

o.¢]
f dx e * sin bx = (2.16)
0

a4+ b2’

Now integrate both sides of this equation from 0 to oo with respect to the parameter
a, and interchange the order of integration on the left-hand side. (This can be shown
to be a legitimate operation.) Use the fact that

/ da 1 tan-! a 2.17)
= —tan  —. .
a*+b* b |b]
The result is
[e ] 3 b
/ dx 2% = Lre(h). (2.18)
0 X

Here e(b) stands for the discontinuous signum function defined as

def. {+1 for b >0 (2.19)

eb) = —1 for b < O.
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Itis obvious that €(x) is not really a function in the conventional, elementary sense. It
is an example of a generalized function or distribution. A few of the most common
generalized functions will be discussed in Chap. 4.

The formula (2.18) is a rather important and useful one. The integral on the left-
hand side is called the Dirichlet integral. We will encounter it several times in the rest
of this book, and it will be evaluated by more than one method. The name “Dirichlet
integral” is also given to several other integrals, including some of the related results
to be deduced below. But I will use the name exclusively for the integral in Eq. (2.18).
You may also recall that the integrand (sin bx)/x is often called the sinc function,
especially in engineering applications.

Equation (2.18) leads at once to further results. Treat b as a variable and integrate
both sides of this equation over b from 0 to any (real) number c, to get

®  (I—coscx) )
de = §7r|c| = §7TC€(C). (2.20)
0

It follows easily that

o sin ex\2
/de< - )=§7r|c|. 2.21)

Note that the integrand in each of the two integrals above has an apparent quadratic
singularity at x = 0 due to the factor 1/x2. But the numerator also vanishes like x>
in each case, so that the integrand is well-behaved and has a finite limit as x — 0.

% 8. Work through the steps described above to derive Eqs. (2.20) and (2.21). Treat
the cases ¢ > 0 and ¢ < 0 separately, so as to obtain the factor |c| correctly.

By repeated use of the procedure above (integrating the integral at each stage with
respect to the parameter from O up to some real number, and relabeling the latter as
¢), we can go further. The next two stages give

/Ood’C(' )= - o) (2.22)
A x3 Sin ¢cx CX) = 2 (2') ewe). .
and 5 5
*® dx c°x TC
\/0 F (1 — T — COS C)C) = —2(3') E(C). (223)

Once again, note how the apparent singularities of the integrand at the origin are
actually canceled out. In each case, the integrand tends to a finite limit as x — O.

% 9. Derive Egs. (2.22) and (2.23).

You should be able to see a pattern here. The integrands in the successive integrals
represent the power series of the sine and cosine functions with the first n terms
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subtracted out, where n runs over the positive integers. The general formulas thus
obtained are

00 d.x . n—1 (_l)k(cx)2k+l _ . 7TC2n
/0 X2+l {sm o ; W} ==V Tgme@ @
and
o dx n—1 (—1)k(C.X)2k B . 7T62n_1
/(; x2n {§ W — COs Cx} = (=D m e(c), (2.25)

where n is any positive integer. Again, the integrands in the two integrals above have
finite nonzero limits as x — 0. Clearly, as n — o0, the finite sums inside the curly
brackets on the left-hand side tend to sin (cx) and cos (cx), respectively, and the
integrands vanish. It is obvious that the right-hand sides of Eqgs.(2.24) and (2.25)
also tend to zero as n — oo, for any finite value of c.

% 10. Derive Egs. (2.24) and (2.25). The method of induction suggests itself!

Interestingly, the sequence of integrals evaluated above finds an application in
the problem of random flights in probability theory, as you will see in Chap.?20,
Sect.20.4.2.

2.4 Solutions

1. Complete the square in the exponent and shift the variable of integration by a
suitable constant amount to obtain the standard Gaussian integral. >

2. Put b = ik in Eq.(2.4); use the fact that cos kx is an even function of x. >

3. Consider the integral over y first. Complete the square in the quadratic exponent,
and shift the variable of integration from y to y’ = y + p x. The result is a Gaussian
integral whose value can be written down. What is left is another Gaussian integral
over x, whose value can also be written down. >

5. Once again, consider first the integral over z. Complete the square in the exponent,
shift the variable of integration, and write down the value of the resulting Gaussian
integral. Repeat the procedure for the integrals over y and x, in succession. >
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7. Write the integrand in Eq.(2.10) in the form e=/®, where f(t) =t —nInt.
It is easy to see that f(¢) has a maximum at t = n. Expand f(¢) in a Taylor
series about + = n and retain terms up to second order in (¢t — n). Thus f(¢) ~
n—nlnn+ (t —n)?/(2n). Use this and approximate the integral as described in
the text, to obtain (2.11). >



Chapter 3 ®)
Some More Functions Check for

3.1 Functions Represented by Integrals

The functions we come across in physical problems may not always occur in a
completely explicit form. Quite frequently, a function is specified by means of an
integral. This is termed an integral representation of the function concerned. A
formula such as

b
F) = / dy (x. ), 3.1)

where ¢ is a given function and a, b are constants, must be regarded as an integral
representation of the function f (x). In general, it is not possible to actually carry out
the integration over y in closed form, so that the integral representation is about as
close as one can get to an explicit form for the function.

The dependence on x in an integral representation may occur both in the integrand
as well as in one or both limits of integration. The general form of an integral
representation of this sort is thus

b(x)
Fo) = / dy $(x. y). (32)

(x)

There are numerous important examples of functions specified by integral represen-
tations. All the so-called special functions of mathematical physics have integral
representations that are very useful in practice. I will consider some of these in
Chap. 26, after discussing analytic functions of a complex variable, because integral
representations are generally contour integrals in the complex plane. In this chapter
we shall restrict ourselves to a few simple cases involving real variables.
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3.1.1 Differentiation Under the Integral Sign

It is important to be able to write down the derivative of a function defined by a
definite integral. Under suitable conditions of differentiability, it is evident that the
derivative of f(x) in Eq. (3.1) is again an integral, namely, f'(x) = [, b(@(b/ 0x)dy.
In the more general case of Eq. (3.2), extra terms appear in f'(x) owing to the
dependence of the limits of integration upon x. The result is a very useful formula:

df (x) /b(x) dp(x,y)  db(x) da(x)
— = d b — , . 33
o P T T o(x,b(x) = ——d(x.a(x) .| (3.3)
3.1.2 The Error Function
As wehave seen in Chap. 2, the Gaussian integral fooo dte™" = %ﬁ The incomplete

Gaussian integral, namely, the integral of the Gaussian function e~ from 0 up to
any value x, defines the so-called error function. We have

a@f. 2 [T, _p
erf (x) = — / dte™". (3.4)
VT Jo
It is easy to show that
erf (0) =0, erf (c0) =1, erf (—o0) = —1. (3.5)
The error function is an odd function of x, i.e.,
erf (—x) = —erf (x). (3.6)
Using Eq. (3.3), we have
L erf () = —— e 3.7)
—erf(x) = —e ", .
dx JT

which is positive for all finite x. Hence erf (x) is a monotonically increasing function
of x. It increases monotonically from —1 to +1 as x increases from —oo to +o0.

The function

erfe (x) & % / Cdte” =1 —erf (x) (3.8)
™ Jx

is called the complementary error function.
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The error function appears frequently in statistics. As you will see in Chap. 20,
Sect.20.2.1, the cumulative probability distribution function of a so-called normal

or Gaussian distribution is essentially an error function.

% 1. Sketch erf (x), and erfc (x) versus x.

3.1.3 Fresnel Integrals

If the exponent in the integrand in Eq. (3.4) is pure imaginary, we get the Fresnel
integrals. Their precise definitions are

def. [* 12 def. /‘Y (12
X(s) = dt 5 d Y(s) = d STte) > 0). 3.9
) /0 cos (27rt ) an (s) A ¢ sin (27r ) (s >0) 3.9)

You may recall that these functions occur, for instance, in the theory of Fresnel diffrac-
tion. The Cartesian coordinates of Cornu’s spiral are given by (X , Y), parametrized
by the arc length s of a point on the spiral as measured from the origin of coordinates.
It is obvious from the definitions above that X (0) = Y (0) = 0. But it is not imme-
diately clear whether X (s) and Y (s) remain finite as s — co. Since cos (37%) and
sin ( %mz) oscillate extremely rapidly between the values 1 and —1 when ¢ becomes
very large, there is some reason to hope that the Fresnel integrals might actually
converge to finite values in the limit s — oo. This turns out to be so. It can be shown
that
lim X(s) = lim Y(s) = 1. (3.10)
§—>00 §—>00
A non-rigorous, heuristic way to see this is as follows. X (co) and Y (co) are the
real and imaginary parts, respectively, of the integral fooo dt exp (%l 7Tt2). If we now
assume that Eq. (2.3) for the value of the Gaussian integral is valid as it stands even
when the parameter a is pure imaginary, then

/oodt e = Ji/2) = L1 + ). @3.11)

0
Hence X (0c0) = Y (o0) = % .

% 2. Sketch X (s), Y (s) and Cornu’s spiral (Y versus X, eliminating s). You may
want to write a suitable program to calculate X (s) and Y (s) and to plot the graphs.
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3.1.4 The Gamma Function

Like the error function, the gamma function is a very basic function that is defined
by an integral. It is a generalization of the factorial of a nonnegative integer. Recall
that

o0
f dit"e =n! forn=0,1,.... (3.12)
0

Replacing n in the factor ¢* on the left-hand side by a real variable (x — 1) defines
a function of x called the gamma function:

o0
T(x) ‘*:f/ dit* e, x>0. (3.13)
0

The gamma function is also called the Euler integral of the second kind.' The
condition x > 0 in Eq. (3.13) is necessary to ensure the convergence of the integral,
because the factor #*~! is integrable at the lower limit of integration (namely, 0) only
if x > 0. Convergence at the upper limit of integration, oo, does not pose any such
problem, because of the presence of the decaying exponential factor e~

When x equals any positive integer n, the value of the integral reduces to (n — 1)!.

Hence I'(n) = (n — 1)! forn =1, 2, .... Thus,

e the gamma function I (x) interpolates between positive integral values of its argu-
ment to provide a generalization of the factorial of a nonnegative integer.

It must be stated right away that such interpolations, in general, are never unique.
For instance, a term like sin wmx could have been present on the right-hand side
of Eq. (3.13), without affecting Eq. (3.12). Extrapolations from the integers to the
continuum can become unique only when further conditions are imposed and met.
In the present case, it turns out that

e I['(x) is the unique interpolation of n! such that its logarithm, the function In I"(x),
has a positive curvature for all x > 0. In technical terms, In I'(x) is a convex
function for x > 0.

Figure 3.1 shows I"(x) forx > 0. The function has a simple minimumatx = 1 +e~!.
The gamma function can be extended to negative values of x as well. In Fig. 25.5 of
Chap. 25, Sect. 25.2.1, you will see what I" (x) looks like for all real x.
A very important property of the gamma function is the functional equation that
it satisfies, namely,
F'x+1) =xITkx). (3.14)

IThe Euler integral of the first kind is the beta function, which will be discussed in Chap. 25,
Sect.25.2.6.
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Fig. 3.1 I'(x) for real F(m)‘
positive values of the
argument x

% 3. Using integration by parts, establish Eq. (3.14) from Eq. (3.13). Note how it is
essential to have x > 0 during this process, in order to be able to derive the result
sought.

This functional equation is a fundamental property of the gamma function. It can
be used to give meaning to the gamma function in the region in which the original
defining integral, Eq. (3.13), is no longer convergent: namely, the region x < 0.

We shall study the gamma function I'(z) in greater detail in Chap.25. As you
will see in Sect.25.2.1, replacing x by a complex variable z in Eq. (3.13) yields the
definition of the gamma function I"(z) in the whole of the right half-plane, Re z > 0.
The functional equation (3.14), too, remains valid when x is replaced by z. It then
enables us to extend (or “analytically continue”) the gamma function to the whole
of the complex plane. A contour integral representation of I'(z) that is valid in the
whole of the complex z-plane will be derived in Chap. 26, Sect.26.2.1.

3.1.5 Connection to Gaussian Integrals

Gaussian integrals, that we considered briefly in Chap. 2, Sect. 2.1, can be expressed
in terms of gamma functions. We know from Eq.(2.1) that fooodx e = %ﬁ
Setting x> = u gives

foodu u e =T (1) = r (3.15)

0

This is an important result. More generally, we have

/ dx x" e " = %F (%(n + 1)) a2 450, n> —1. (3.16)
0

% 4. Establish Eq. (3.16).
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Note, in particular, that n need not be an integer in the formula of Eq. (3.16). In fact,
as you might guess, the formula continues to be valid even for complex values of the
parameters n and a, provided Ren > —1 and Rea > 0.

o]

% 5.Let a > 0. Show that/ dxe™ =T +a").

0
The gamma function of a half-odd-integer: From the recursion relation (3.14) and
the fact that I (%) = /7, it follows at once that the value of the gamma function of
a half-odd-integer can be written down explicitly. We have

7 (2n)!
F(n+%) = 22n 1 7
) n=0,1,2,...). (3.17)
T (=1)"2°" n!
F(—n—i—%) = T

% 6. Derive Egs. (3.17).

You will observe that the product of the two gamma functions above is particularly
simple:

F(n+3)T(-n+13)=D"r (3.18)

This is not by chance. It is the special case, for z = n + %, of the “reflection formula”
(Eq. (25.48)) that will be derived in Chap. 25, Sect.3.19. The formula is

I'z)T'(1 — z) = wcosecz. (3.19)

Some useful trigonometric integrals: The gamma function for half-odd-integer val-
ues of the argument enables us to express the values of a number of very useful
trigonometric integrals. I record these here, as they will be used in the succeeding
chapters.

Let n and m be positive integers. Then

/2
/ df (cos 0)" ! (sin )"~ ! = (3.20)
0

This formula is a special case of a more general result (Eq.(25.43)) that will be
established after we discuss the beta function in Chap. 25, Sect.25.2.6. It follows at
once that
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Jar (ba+)

r(1+50)

Further, Eq. (3.20) and the first of Eqgs. (3.17) give, on simplification,

T w/2
/ do (sin ) =2/ do (sin 0)! = (1=0,1,2,...).| (321
0 0

eI m/ m(21)!
/O df (sin 0)* = /0 df (cos 0)? = e (3.22)
and
/2 0 0 21+1 2 0 0 21+1 22[(“)2
do (si = d = 3.23
/O (sin 0) /0 (cos 0) Ty (3.23)

wherel =0, 1, 2, ....

% 7. Starting from Eq. (3.20), verify Egs. (3.21)—(3.23).

3.2 Interchange of the Order of Integration

Quite frequently, one encounters double or multiple integrals in which the limits of
integration over a variable depend on the variables yet to be integrated over. Further,
it may be necessary to interchange the order of integration to simplify or evaluate
the multiple integral. Some care must be exercised in determining the correct limits
of integration when such an interchange is done.

One of the most commonly occurring examples is the following double integral.
Let a be a positive number. Then

/de/() dy o(x,y) =f()dyfdx o(x,y). (3.24)

Figure 3.2 shows how you can write down this identity by inspection. All one has to
do is to note that the triangular region of integration can be “scanned” from left to
right, or from bottom to top, as depicted by the lines in the shaded triangle.

If the integrand ¢(x, y) is a symmetric function of its arguments, i.e., if ¢(x, y) =
¢(y, x), then a further relation holds good:

a X 1 a a
/dx/dy o(x,y) = zfdx/dy o(x, y). (3.25)
0 0 0 0

This equation merely says that the integral over the full square is twice the integral
over each triangle, because the integrand is symmetric under a reflection about the
diagonal line y = x.
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Fig. 3.2 Region of integration in Eq. (3.24) (shaded)

The relation (3.25) is a special case of a more general one in an arbitrary number
of variables. Let ¢(x; , x5, ..., x,) be atotally symmetric function of its arguments,
i.e., it remains unchanged in value under the interchange of any pair of its arguments.
The region given by

-, 0<x,<a, (3.26)

where a is a positive number, is obviously an n-dimensional hypercube of side length
a. The region specified by the conditions

0<xi<x=<---=<x,<a (3.27)
is contained in this hypercube. A convex region of this sort is called a simplex. It is
the generalization, to n dimensions, of a triangle in two dimensions, a tetrahedron in
three dimensions, and so on. There are obviously n! such simplexes in the hypercube,
comprising all permutations of the coordinates xy, x,, ..., x, in (3.27). A simple
identity connects the integral of ¢(x;, x5, ..., x,) over any one of the simplexes
to its integral over the hypercube. We have, for instance,

/dxn/ dxn—l"'/.dxl ¢(X1,X2, ey xn)
0 0 0

1 a a a
= —/dx,lfdxn_] ~~~/dx1 O(x1, X2, ..., xp). (3.28)
n! Jo 0 0

The multiple integral on the right-hand side has the advantage that the limits of
integration in each integral are constants rather than variables. The identity (3.28)
is very useful in numerous applications. One encounters it, for instance, in quantum
mechanics, in the context of the Dyson series for the time-development operator in
the case of a time-dependent Hamiltonian. It also appears in the derivation of Wick’s
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Theorem in quantum field theory.

t t
% 8. Consider the double integral 1 (¢) = /dn /dtz o(|t; — t]), where t > 0 and
0 0
¢ is a given function of its argument.

(a) Show that the integral can be reduced to
t
1(t) = Z/dt’(t —tH o).
0

(b) Assuming that the integral fooodt’ @(t") is finite, show that

I1(t e
lim i} =D where D :/ dt’ ¢(t").
0

t—o0 2t

Such an integral arises in the physical context of the simplest model for the random
motion of a particle in a fluid. 7 (¢) then represents the mean squared displacement
of the particle along any given direction in a time interval 7. The function ¢ is called
its velocity autocorrelation function, and D is the diffusion coefficient. The relation
equating it to the time integral of the velocity autocorrelation function is called the
Kubo-Green formula for the diffusion coefficient. We shall consider several aspects
of diffusion in Chaps.21 and 30.

% 9. Show that, if ¢(x) is some given integrable function,
x Xn X 1 x -
dxy [ dxpy--- | dxp 1) = ——= | dxi (x —x1)" d(x1).
0 0 0 (n— D! Jo

% 10. Let x > 0. Define the function f(x) as the multiple integral

f(x) =////dx1 dx, dxs dxy ,
R

where R is the region given by

.{MZO,)QZOJQZO,MEO;

X1 +x+x3+x4 <x.

Evaluate the integral, and sketch f(x) as a function of x.
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3.3 Solutions

5. Change the variable of integration to t = x“ and use the definition (3.13).

Remark With increasing «, the integrand exp (—x®) essentially remains close to
unity for x < 1, but falls off to zero more and more rapidly for x > 1. The integral
has a minimum at o = e, and tends toward its limiting value of unity as « — oco. »

9. Use the formula (3.24) repeatedly, starting with the integrations over x; and x; .
>

10. The integral can be written as

X X—X] X—X1—X2 X—X]1—X2—X3
/ dxlf dx2/ dx3/ dxy ,
0 0 0 0

which is easily evaluated to give f(x) = x*/4!. Observe that this is just the “vol-
ume” of one of the 24 simplexes comprising the four-dimensional hypercube of side
length x. >



Chapter 4 ®)
Generalized Functions Creck for

Functions that have finite or infinite discontinuities (or jumps) occur very frequently
in mathematical models of physical systems. Potential barriers represent a com-
monly encountered example. Impulse functions in signal analysis represent another.
Such discontinuous functions are not functions in the conventional sense of the term.
There is, however, a rigorous mathematical theory of such generalized functions or
distributions. The most common among these distributions are the step function and
the Dirac delta function. This chapter is devoted to a discussion of these generalized
functions at an elementary level.

4.1 The Step Function

The unit step function, also called the Heaviside function in earlier times, is the
discontinuous function defined as

def. {—i—l for x > 0 @1

0 —
) 0 forx <0.

It is obvious that 6(x) has a finite jump at x = 0. It is sometimes convenient to
define 6(0) to be the average value %, but this is not always necessary. The sum

0(x) 4+ 6(—x) is evidently equal to 1. The difference 8(x) — 0(—x) is
O(x) — 0(—x) = e(x), 4.2)

the signum function already defined in Eq. (2.19) of Chap. 2, Sect.2.3. The function
€(x) looks like the limit of a tanh (or hyperbolic tangent) function as the “kink” in
the function becomes more and more steep, i.e., as the slope at the origin tends to
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Fig. 4.1 The function
tanh (x/€) tends to the 1
distribution £(x) as ¢ - 0

4 Generalized Functions

» tanh (z/€)

___________________

___________________

infinity, as shown in Fig.4.1. In fact, we could define e (x) as the limit of a continuous
sequence of functions tanh (x/e€) as the positive parameter ¢ — 0. That is,

leifgl tanh (x/€) = e(x).

4.3)

As you will see shortly, this representation will help us relate the step function and

the signum function to the Dirac delta function.

% 1. Sketch the following generalized functions:

(@) 6 (1 —x?) (b) 6 (tanh x) (c) x 0 (sin x)

DO+ —0x—1) () 0(1+x)0(—x)F) Q2

— XD 62— Ix).

A Dirichlet-type integral for a rectangular pulse is provided by the integral

1 for |x] < 1

™ t

2 [ in ¢ t
—/ dr R L L por x =1 (4.4)
0

0 for |x| > 1.

% 2. Derive Eq. (4.4) from the Dirichlet integral fooodt (sin xt)/t = %ws(x).

[e¢]

% 3. Show that / dx[0(x +2)— 6 (x —2)]sechx =4 tan"'(¢?) — 7.

o0
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4.2 The Dirac Delta Function

4.2.1 Defining Relations

Let f(x) be a function that is well-defined and finite for all values of the real variable
x. Can we construct some sort of filter or “selector” that, when operating on this
function, singles out the value of the function at any prescribed point x¢ ?

A hint is provided by the discrete analog of this question. Suppose we have a
sequence (ai, aa,...) ={a;|j =1,2,...}. How do we select a particular member
a; from the sequence? We do so by summing over all members of the sequence with
a selector called the Kronecker delta, denoted by §; ; and defined as

Lifiz i
58 D (4.5)
0ifi#j.
It follows immediately that
> dijaj=a;. (4.6)
J

Further, we have the normalization Y ; d;j =1 for each value of i, and also the
symmetry property J;; = ;. We will consider the Kronecker delta more formally
in Chap. 5, Sect.5.1.3.

Reverting to the continuous case, we must replace the summation over j by an
integration over x. The role of the specified index i is played by the specified point
xo . The analog of the Kronecker delta is written like a function, retaining the same
symbol ¢ for it. (Presumably, this was Dirac’s reason for choosing this notation for
the delta function.) So we seek a “function” §(x — x() such that

f dx 6(x — xo) f(x) = f(x0). 4.7)

o0

Exactly as in the discrete case of the Kronecker delta, we impose the normalization
and symmetry properties

/ dxd(x —x9) =1 and 0(x —x9) = d(xg — x). (4.8)

o]

Equations (4.7) and (4.8) may be taken to define the Dirac delta function. The form
of Eq. (4.7) suggests that 6(x — x¢) is more like the kernel of an integral operator
than a conventional function. And indeed it is—the kernel of the unit operator.
(We will discuss integral operators in Chap.32.) Incidentally, it follows from the
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Fig. 4.2 Ase — 0, the f(z) 4
rectangular window tends to

0(x = x0) Yoeyp=---------- . /
F\_/—\i_/

Ty—€ Ty te

normalization that, if the variable x has some physical dimensions, then §(x) has the
reciprocal of those dimensions.

What can d(x — xo) possibly look like? A naive way of answering this question
is as follows. Take a rectangular window of width 2¢ and height 1/(2¢), so that the
area of the window is unity. Place it with its bottom edge on the x-axis and slide it
along this axis. When the window is centered at the chosen point x(, as shown in
Fig.4.2, the integral of f(x) multiplied by this window function is simply

Xo+e
(1/2e)f dx f(x).

This does not quite select f(x() alone, of course. But it will do so if we take the
limit € — 0. In this limit, the width of the window becomes vanishingly small.
Simultaneously, its height becomes arbitrarily large, so as to capture in full the
ordinate in the graph of f(x), no matter how large the value of f(x() is. A possible
explicit form for the Dirac delta function d(x — x¢) is therefore given by

lim 1/(2¢), for xo —e <x <x9+¢€
0(x — xp) = E)HO 4.9

, for all other x .
This cannot be a stand-alone definition. It cannot be taken literally. If we did so, then,
formally, 6(x — x() must be zero for all x # x¢, while it must be infinite for x = x.

e An explicit form for the delta function is always to be understood as something
that makes sense only when it occurs in an integral like

/oodx 0(x — x0) f(x),

i.e., when it acts on ordinary functions like f (x) and an integration over x is carried
out.
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e We know that the value of the integral above is f (xo). It is easy to see that we also
have

oo b
/ dx 6(x —x) f(x) = / dx 6(x — xo) f(x) = f(x0), (4.10)

[ee] a

for any a and b such thata < x¢ < b. In other words, the delta function must “fire”
within the range of integration. Otherwise the integral is equal to zero.

It is immediately clear that the so-called Dirac delta “function” cannot be a function
in the conventional sense. In particular, § (x — x¢) must be singular (formally infinite)
at x = xy, that is, at the point where its argument is zero. The Dirac delta function is
a generalized function or distribution.

4.2.2 Sequences of Functions Tending to the §-Function

Mathematically, an explicit form for the Dirac delta function is properly given in
terms of a sequence or family of conventional functions. This is preferable to the
“window” representation (4.9), which involves discontinuous functions. It can then
be arranged that, in a suitable limit, the sequence of functions approaches a quantity
that has all the properties desired of the delta function. An infinite number of such
sequences may be constructed. For instance, take any family of continuous functions
¢e(x — xp) parametrized by a positive constant €, and with the following properties:
Each member of the family

(1) has a peak at xo;
(ii) is symmetric about the point x¢; and
(iii) is integrable, such that f_oooo dx ¢.(x) = 1.

Matters are arranged such that, as the parameter ¢ is made smaller and smaller,
the height of the peak in ¢.(x) increases while its width simultaneously decreases,
keeping the total area under the curve equal to unity. Then

lim ¢ (x = x0) = 6(x — x0). @.11)

Some of the simplest choices for such sequences are given below. For ease of writing,
letus set xog = 0. One of the simplest possibilities is the family of Lorentzians, given
by

€

Pe(x) = m . 4.12)

Then lirr(l) ¢e(x) is a representation of the Dirac delta function §(x).
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% 4. Here are some other functions ¢, (x) that tend to §(x) as € — 0 from above:

1 1 ) sech?(x /¢) sin(x /e€)
. —|x|/€ .. —x2/4e .
i) —e i) ——e iii) ——— (v .
® 2e (@) 2./me (i) 2e @) X
(a) Sketch each these functions schematically, and check out what happens as
smaller and smaller values of € are chosen.
(b) As an amusing exercise, think up at least one other sequence of continuous
functions that leads to the delta function as a limiting case.

4.2.3 Relation Between 6(x) and 0(x)

In pictorial terms, differentiating a kink-shaped function produces a bell-shaped
function. As the kink gets steeper, the bell curve gets narrower. More precisely,

di tanh (f) = lsech2 (3—6) (4.13)

X € € €

In the limit € — 0, this yields the formal relation

de(x)
dx

=20(x), (4.14)

where €(x) is the signum function. But we also have
0(x) = 3 [1+e@)]. (4.15)

We may therefore conclude that

W) _ s, (4.16)
dx

4.2.4 Fourier Representation of the 6-Function

The fact that

. sin(x/e)
lim ——= =
e—0 X

5(x) 4.17)

leads to a most useful way of representing the delta function. If we pute = 1/K, we
get
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: K iKx _ ,—iKx
5(x) = fim SO et me (4.18)
K—>oco X K—o0 2imx
But this can be written as
1 K ) 1 e} )
S(x) = — lim | dke* = — [ dk e~ (4.19)
2T K—oo J_g 27 J_ o

This is a very important result. Since |¢’**| = 1, it is obvious that the final integral
above is not absolutely convergent. Nor is the integral well-defined in the ordinary
sense, because sin kx and cos kx do not have definite limits as kx — Fo0o. These
are just further reminders of the fact that the delta function is not a conventional
function, as I have already emphasized. We shall study Fourier series and Fourier
transforms in Chaps. 17 and 18, respectively. But if you are already familiar with
Fourier transforms, you will recognize that the last equation above seems to suggest
that

e the Fourier transform of the Dirac delta function is just unity.

This is indeed so, as you will see in Eq. (18.6) of Chap. 18, Sect. 18.1.3. It suggests,

too, that one way of defining “singular” functions (or distributions) like the delta

function might be via their Fourier transforms. For example, we could define (x) as

the inverse Fourier transform of a constant—in this case, the constant is just unity.
As the delta function is a symmetric function of its argument, we have

1 [ ,
S(x —a) =68(a —x) = > / dk eTkx=a) (4.20)

for any real number a. Note the & sign of the exponent in the integrand: the result is
valid for both signs.

4.2.5 Properties of the -Function

To reiterate what has already been said:

e All formulas involving d(x) are to be understood as valid when both sides of the
formula are multiplied by any suitable smooth function of x, and an integration
over x is performed.

In the general context of distributions, these smooth functions are called test func-
tions. In order to be mathematically precise we must also specify, for each distribu-
tion, the corresponding family or space of test functions.
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Consider the delta function d(ax) where a (£ 0) is a real constant. Using the
properties of §(x) already listed, it is easily shown that

d(ax) = @ . 4.21)
|al

In practice, we often encounter the j-function in the form § (g (x)) ,1.e., the argument
of the §-function is itself some function of x. This quantity can be given a meaning
when the real zeroes of g(x) are all simple zeroes, i.e, the equation g(x) = 0 does not
have any repeated real roots. Let x; (i = 1, 2, ...) be the real roots of the equation
g(x) = 0. Then, in the neighborhood of any root x;, the function g(x) has a Taylor
series expansion

9 = (x —x1) g/ () + O((x — x)?), (4.22)

provided ¢’(x;) # 0, that is, x; is a simple zero of g(x). Here ¢g'(x) stands for the
derivative of g(x). Since g’(x;) is a constant, it follows from Eq. (4.21) that

5 —
dmm)=§:f§a%%, (4.23)

where the sum runs over all the real zeroes of g(x). Further:

e If g(x) has no real zeroes, the integral [ _dx f(x) §(g(x)) = 0.
e If g(x) has any multiple (or repeated) real zero, & (g (x)) does not have any meaning.

A special case of the general formula (4.23) that occurs frequently is the following.
If a (£ 0) is any real number, then

_dxt+a)+d(x —a)
B 2|al

S(x? —a?) (4.24)

Note that §(x?) is meaningless, as the equation x> = 0 has only a double root at
x =0.

The derivatives of the o-function may also be defined, as distributions. A rough
argument to help you understand the nature of these distributions is as follows.
Consider a suitable (bell-shaped) continuous differentiable function ¢, (x) that tends
to the J-function in the limit e — 0. With increasing n, the function d"¢.(x)/dx"
oscillates more and more wildly between large positive values and large negative
values. These oscillations are increasingly compressed into the neighborhood of
x = 0as e — 0. The successive derivatives of the -function are therefore even more
singular at x = O than §(x) itself. They must be interpreted by using integration by
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parts a sufficient number of times, so that the derivative operator acts on the test
function rather than the d-function. Formally, d"§(x)/dx" is an even or odd function
of x according as n is even or odd. In particular,

§'(=x) = =6 (x). (4.25)

Another useful formula is

x6'(x) ==0(x), or |§'(x)= - (4.26)

which shows you that §’(x) is an odd function of x, and also precisely how it is
“more singular” at the origin than §(x).

Some objects involving the J-function may be too singular to be defined even as
distributions. For instance:

e The square of the Dirac delta function, 52(x), does not exist as a distribution.

Thus 6%(x) is meaningless, as far as we are concerned.

o0

% 5. Show that / dx e”™ §(sin x) = coth 1.

—0Q

% 6. Write J (sin x — cos x) as a sum of §-functions in x, i.e., find the points x,,, the
coefficients c,, and the range of values of the summation index » in the expansion

0 (sin x — cos x):ché(x—xn).

Another example of the use of the -function is provided by the Gauss map of the
unit interval [0, 1], defined in Eq.(1.7) of Chap. 1, Sect. 1.2. Recall that the map is

fx)y=x"'—[x"1, xelo0,1] 4.27)

where [x '] denotes the largest integer < 1/x. In the context of dynamical systems,
it is of interest to solve the homogeneous integral equation

1
0 = [ dxde = 1) oo (428)

for the function p(§), where the variable £ is also in the range [0, 1]. (Equation (4.28) is
called the Frobenius—Perron equation.) The solution p(¢) is the invariant density
of the Gauss map. With the help of the formula (4.23), Eq. (4.28) is converted to the
functional equation



38 4 Generalized Functions

= 1 1
p§) = Z Erny P(m) (4.29)

n=1

This certainly does not appear to be an easy equation to solve. But its form prompts
the guess that some rational function of ¢ might be a possible solution. The actual
solution is due to Gauss himself! It is given by

p(€) = (4.30)

1+ m2°

The constant factor In 2 is included in order to satisfy the normalization condition
fol d€ p(€) = 1. It can be shown that Eq. (4.30) represents the unique nonnegative,
integrable solution to the integral equation (4.28).

% 7. Show that, when f(x) is given by the Gauss map (4.27), the integral equa-
tion (4.28) reduces to the functional equation (4.29). Verify that (4.30) is a solution
of this equation.

% 8. Here are a couple of examples of multiple integrals involving products of
d-functions.

(a) Show that

1 1
/ dxl"'/ dxn(s(xn_\/xn—l)a(xn—l_\/xn—Z) 5(x2_«/x_l)=1
0 0

(b) Show that

1 1
/ d-xl"'/ dxn(s(xn —2\/)(”71)(5()6”71 —2\/)6,172) "'5()‘:2 —2\/)6_1) = 22_2”'
0 0

4.2.6 The Occurrence of the d-Function in Physical
Problems

Why does the §-function appears so naturally in physical problems? Here is a familiar
instance. Consider the basic problem of electrostatics: given a static charge density
p(r) in free space, what is the corresponding electrostatic potential ¢(r) at any
arbitrary point r = (x, y, z)? From Maxwell’s equations, we know that ¢ satisfies
Poisson’s equation, namely,

V2g(r) = —p(r)/eo (4.31)
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where ¢ is the permittivity of the vacuum. What does one do in the case of a point
charge g located at some point ryp = (xo, Yo, 2Z0)? A point charge is an idealization
in which a finite amount of charge ¢ is supposed to be packed into zero volume. The
charge density must therefore be infinite at the point ry, and zero elsewhere. The
delta function comes to our aid. We may write, in this case,

p(r) =g 6(x —x0) 6(y — y0) 0z — 20) = ¢ 6V (r — 19 , (4.32)

where the three-dimensional delta function 6© is shorthand for the product of the
three delta functions in the equation above. It is easy to verify that this expression
for p(r) has all the properties required of a point charge at the point ry .

This example illustrates how (and why) the delta function frequently appears as
the right-hand side of fundamental equations of mathematical physics.

e The Dirac delta function models the density of a point source. (This density could
be the charge density, or the mass density, or any other density.)

e A J-function of the time variable # also models a so-called “unit impulse function”,
and hence occurs naturally in signal analysis and response theory.

e More generally, the -function represents the unit operator in function space, and
therefore appears automatically as the right-hand side in equations satisfied by the
Green functions of differential operators.'

e It turns out that the §-function also appears as the singular part of fundamental
solutions to basic equations such as the wave equation (as you will see in Chap. 31).

Representations of multidimensional §-functions like §® are easily written down in
Cartesian coordinates. For instance, the three-dimensional counterpart of the Fourier
representation of Eq. (4.19) is just

1 o0 o0 o0 X
) = dky | dky | dks el Fixtheytka), (4.33)
@m)? J —00 —00

As in Eq. (4.20) for the one-dimensional case, the sign of each of the exponents in
Eq. (4.33) can be either + or —. In more compact notation, we therefore have

0¥ (r) = # / Ak eT kT, (4.34)

The notation d>k is self-explanatory:it is the volume element in k-space. I have
mentioned already that the physical dimensions of a §-function are those of the
reciprocal of its argument. Hence §©® (r) has the physical dimensions of the reciprocal
of a volume, namely, [length] 3.

I'This will become clear when we consider function spaces in Chap. 13, Sect. 13.2.2. The Green
functions of the most common partial differential operators of mathematical physics will be derived
in Chaps.29-32.
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4.2.7 The 6-Function in Polar Coordinates

We often encounter higher dimensional d-functions in non-Cartesian coordinates.
These entail coordinate-dependent factors that multiply the individual é-functions.
The most commonly occurring among these are the two- and three-dimensional ¢-
functions in polar coordinates.

(a) Let (o, ¢) denote plane polar coordinates in the (x, y) plane. Then

1
6@a—r6=56w—93&¢—¢6. (4.35)

(b) Let (o, ¥, z) denote cylindrical polar coordinates in three-dimensional space.
Then

wﬁu—rd=§5@—gﬁaw—¢5&z—fy (4.36)

(c) Let (r, 0, ¢) denote spherical polar coordinates in three-dimensional space.
Then

1
V-1 = S O N8O =093 — ). (4.37)

The factor sin 6 in the denominator of Eq. (4.37) obviously comes from the simplifi-
cation of d(cos 6 — cos 0). Note that the equation cos § — cos #’ = 0 has a unique
root given by 6 = 6 in the range [0, 7] of the polar angle. Further, sin ¢ is nonneg-
ative in this range, so that | sin 8| = sin 6.

% 9. Establish Egs. (4.35)—(4.37).

4.3 Solutions

1. (a), (d), and (e) are different ways of representing a rectangular pulse of unit height
ranging from x = —1 to x = 1. The function in (f) is a triangular pulse. >

3. Recall, from elementary calculus, that the indefinite integral [dx sech x is easily
done by changing variables to u = e*. >

5. Pick up the contributions to the integral from all the points x = nw, where n € Z.
The sum over 7 is just a geometric series. >
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6. The argument of the delta function vanishes whenevertan x = 1,orx = (n + %)77,
where n is any integer. Evaluating the derivative of (sin x — cos x) at these points,
we get

§ (sin x —cos x) = Z «/Eé(x—mr—lﬂ).

4
n=-00

Each of the coefficients ¢, is equal to +/2 in this case. >

8. (a) The factor § (x,, — ./x,_) can be used to perform the integration over x, right
away, because for each value of x,,_; € [0, 1], there exists a value of x,, € [0, 1].In
this manner, all the integrals from [dx, up to [dx, can be carried out at once. This
leaves just fol dx; = 1 as the final result.

(b) You will find it helpful to sketch the graph of x, = 2, /x,_1 for x,,_; € [0, 1]. The
factor § (x, — 2./X,—1) gives a nonzero contribution only as long as x,_; lies in the
range [0, }1]. Hence, once the integration over x,, is carried out, the integral over x,,_;
is confined to the range [0, }1]. The factor 6 (x,—; — 2,/X,—2) then restricts x,_, to
the range [0, (%4]. In this manner, the successive ranges of integration get more and
more restricted, leading to the final answer quoted. >



Chapter 5 ®)
Vectors and Tensors et

5.1 Cartesian Tensors

5.1.1 What Are Scalars and Vectors?

At school, we learn that a vector is a quantity with a magnitude and a direction—
in contrast to a scalar, with which no direction is associated. We then proceed to
physical examples of vectors such as velocity and force, which help us understand
“intuitively” how to handle vectors.

But here is the question that should be asked immediately when one is told that a
vector is a quantity “with both a magnitude and a direction.” Direction with respect
to what? With respect to a given, fixed set of coordinate axes prescribed once and
for all? If so, why is it that no such set is ever prescribed at the start of any text on
mechanics, for instance? The short answer is that relationships between vectors are
valid in every frame of reference; and there is no need to specify any specific set
of axes, precisely because the way vectors change from one set of axes to another
is encoded in the very definition of a vector. I hasten to add that this short answer
requires further elaboration, of course.

The fact is that the school-level “definition” quoted at the beginning of this section
is seriously flawed. It does not give the true defining property of scalars and vectors;
and it does not convey the fundamental need for introducing such quantities. In a
nutshell:

e It turns out that the laws of physical science are unchanged in form under various
choices of coordinate systems, frames of reference, etc. That is, they are form-
invariant under various groups of transformations.

e In order to make this property manifest, these laws must be relationships between
quantities whose transformation properties are well-defined. That is, they must be
expressed in terms of covariant quantities.

e Scalars, vectors, tensors, etc., are precisely objects of this kind.

© Authors 2020 43
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The next question that arises is: what kinds of transformations? Several kinds of
transformations are relevant to physics: those that involve the space—time coordi-
nates, such as rotations of the spatial coordinate axes, translations, or shifts in the
origin of the space—time coordinates, boosts, or transformations to moving frames
of reference, etc. In addition, there are other “internal” transformations that are not
induced by coordinate transformations, such as gauge transformations. There is a
systematic way of introducing quantities with precise transformation properties under
all these transformations.

e At the most elementary level, what we call scalars, vectors, and tensors are (sets
of) quantities with specific transformation properties under rotations of the spatial
coordinate axes.

Let us, therefore, restrict our attention to Cartesian tensors in Euclidean space of 3
dimensions (and more generally, of d dimensions). Here are the proper definitions
of a scalar and a vector in this case:

(i) A scalar (or a tensor of rank 0) is a quantity that is unchanged under a rotation
of the coordinate axes about the origin of coordinates.

(ii) A vector (or a tensor of rank 1) is a set of quantities (called its components) that
transforms in exactly the same way as the coordinates themselves transform,
under a rotation of the coordinate axes.

(iii) A tensor of rank >2 is a set of quantities whose transformation properties under
a rotation of the coordinate axes generalize in a straightforward manner that of
a vector, as we shall see shortly.

I reiterate that the precise definition of vectors, tensors, and other such objects is much
more general. The space concerned need not be Euclidean, and many other groups
of transformations may be considered. Of these, the most commonly occurring one
is the Lorentz group of transformations in four-dimensional space—time arising from
Special Relativity. More will be said about this in Chap. 9, Sect.9.2.

5.1.2 Rotations and the Index Notation

Latin indices i, j, k, [, . .. will be used to denote Cartesian components of vectors
and tensors of higher rank. These indices will run over the values 1, 2, ..., d, where
d is the dimensionality of the space concerned. We use the (Einstein) summation
convention for repeated indices. It is an astonishingly useful and powerful notational
device.

(i) If an index appears once on the left-hand side of any equation (it is then called
a free index), it must appear exactly once on the right-hand side as well.

(ii) If an index appears twice on one side of any equation, it is called a contracted
index or dummy index, and it is to be summed over the values 1, 2, ..., d.
Therefore this index cannot appear explicitly in the result of the summation.
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This is a trivial but very useful fact. In calculations, the exchange of labels or
dummy indices is often helpful.

(iii) If it appears three times or more on the same side in any equation, there is a
mistake somewhere!

At this level, much of vector and tensor algebra reduces to the simple task of manip-
ulating indices correctly. In particular, you must remember to use a fresh symbol for
each distinct dummy index.

To simplify matters, I shall loosely call 1-index objects like a; a vector, 2-index
objects like 7j; a tensor of rank 2, 3-index objects like S;i a tensor of rank 3, and so
on—although these are, strictly speaking, just the components of a vector, a second-
rank tensor, and a third-rank tensor, respectively.

A rotation of the coordinate axes takes a general point r to another point r’, such
that: (i) the origin of coordinates remains unchanged, (ii) the distance between any
two points remains unchanged. Therefore:

e Every rotation of the coordinate axes about the origin in d-dimensional space
(where d > 2) is a linear, homogeneous transformation of the (Cartesian) coordi-
nates.

e Suchatransformationis specifiedbya (d x d) orthogonal matrix R.In Sect.5.1.4,
you will see why any rotation matrix must be an orthogonal matrix.

That is, R satisfies the condition

RRT=R"R=1, (5.1)

where the superscript T denotes the transpose, and 7 is the unit matrix.

Let us consider three-dimensional space, in order to be specific. (But the discussion
that follows is easily generalized to any Euclidean space of d dimensions, where
d > 2.)Here is one of the simplest examples of a rotation matrix in three-dimensional
Euclidean space. The matrix corresponding to a rotation of the coordinate axes about
the origin, in the xy-plane, and through an angle «, is given by

cosa sina O
R(a) =|—sinacosa0]. 5.2)
0 0 1

It is easy to check that R(«) is an orthogonal matrix. A remark is in order here. We
could also have called R(«) “a rotation about the z-axis through an angle «,” because
it is a rotation in three-dimensional space. The correct way to specify rotations in
any number of dimensions is to specify the plane in which the rotation takes place,
rather than the axis about which it occurs. This is because no such axis may exist
in general, although in d = 3 it so happens that it always does. Basically, this is
because the number of mutually orthogonal axes (= d) becomes equal to the number
of mutually orthogonal planes (= %d(d — 1)) only for d = 3. I will return to this
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pointin Chap. 12, Sect. 12.2.2, in connection with the eigenvalues of a rotation matrix
in d dimensions.

The general form of a rotation matrix R in three dimensions, corresponding to
a rotation in an arbitrary plane through an arbitrary angle, will be derived in in
Chap. 11, Sect. 11.3.2. (Equation (11.32) gives the matrix elements of R explicitly.)
Under a general rotation, the components x; of a point r change to the components
x '} of the vector r’, given by

X; = R,‘j X; (= Ri1 x1 + Rip xo + Riz x3). (5.3)

Here R;; is the (ij)th element of the (3 x 3) matrix R. A summation over the values
1, 2, and 3 of the repeated index j is implied in the expression R;; x; . The definition
of any vector a now follows:

e Thetripleta = (a;, ay, as)isa vector if, under a rotation R of the coordinate axes,
the new components are given by

aé = R,’j aj . (54)

Tensors of rank 2, 3, ... are sets of quantities that have transformation properties
generalizing that for a vector. For example:

e Tensors of rank 2 and 3 transform, respectively, like
T} =RuRyTy (5.5)

and
S ;jk =Ry ij R Syn - (5.6)

Itis evident that a Cartesian tensor of rank £ has 3° components in three-dimensional
space. In d-dimensional space, this becomes d*.

e A scalar is a single-component object, corresponding to £ = 0. By definition, it
remains unchanged under a rotation of the coordinate axes.

The transformation rule for a tensor of rank 2 is of special interest. Equation (5.5)
can be written as

T =RaTu (R =Ry Tu (R™"); = (RTR™ )y, (5.7)
because the orthogonality condition on R implies that RT = R~!. But we may also

regard components Tj; of a tensor of rank 2 in d dimensions as the elements of a
(d x d) matrix T. Thus the transformation rule in Eq.(5.7) can be written in the

compact form
T'=RTR (5.9)

In other words, 7'’ is obtained from T by a similarity transformation involving R.
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Rotations of the coordinate axes in Euclidean space of every dimension d > 2
form the rotation group in that space, as they have the following properties:

— Two rotations in succession are equivalent to a single “resultant” rotation.

— No rotation at all corresponds to the identity element of the group.

— For every rotation there is an inverse rotation that takes us back to the original
orientation of the axes.

Equivalently, the matrices representing these rotations form a group that is isomor-
phic to the corresponding rotation group. (Two groups are isomorphic if there is a
one-to-one correspondence between their respective elements.) The composition of
two rotations corresponds to multiplying the respective matrices representing the
two rotations. More will be said about rotation matrices in Chap. 11, Sect. 11.3. We
will return to rotation transformations more than once in this book.

A remark is in order at this point. Representing a rotation in three-dimensional
space by a (3 x 3) matrix presumes that we write the position vector of any point
as a (3 x 1) column vector, with elements x, x», and x3 . This might appear to be
obvious, but I must mention right away that there are other ways of representing
the position of a point in space. In Chap. 15, Sect. 15.3.2, we will consider another
important way of doing so, namely, as a (2 x 2) matrix. We will then need to use
another way of representing rotations—as it turns out, in terms of (2 x 2) unitary
matrices.

5.1.3 Isotropic Tensors

An isotropic tensor is one whose components remain unchanged in numerical value
under rotations of the coordinate axes. There are only two independent isotropic
Cartesian tensors in three-dimensional Euclidean space.

The Kronecker delta §; is the first of these. Repeating Eq. (4.5) of Chap. 4, Sect. 4.2.1
for ready reference,

(L ifi=j
‘S’if—{o, if Q£ (5.9)

Clearly, 6; = §j; , i.e., the Kronecker delta is a symmetric tensor. §;; is just the (ij)th
matrix element of the (3 x 3) unit matrix /. It follows at once that it is an isotropic
tensor, because /' = RIR™' = I. Hence § ;J remains equal to §; under any arbitrary
rotation R of the coordinate axes. It is trivially seen that

8; 8it = dix, and hence §;; (= 811 + 620 + 33) = 3. (5.10)
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The Levi-Civita symbol (or “totally antisymmetric symbol”) € is the other isotropic
tensor in three-dimensional Euclidean space. Also called the permutation tensor,
it is defined as

1, if ijk is an even permutation of 123

i = { —1,if ijk is an odd permutation of 123 (5.11)

0, in all other cases.

By an “even permutation” or “odd permutation” of the natural order 123, we mean
the following. Any permutation of an ordered set of objects can be decomposed into
a succession of transpositions, in which a pair of objects is exchanged while the rest
are left in their original positions. For example, the alphabetical order ABCD can be
recovered from the permutation ACDB by first interchanging D and B, to get ACBD.
Next, we interchange C and B to get ABCD. The number of transpositions in this
case is 2, which is an even number. We therefore call ACDB an even permutation of
ABCD.

e The number of transpositions into which a permutation can be decomposed is not
unique, but the evenness or oddness of this number is unique for every permutation.

The values of the components of €;; are sometimes defined as follows. Instead of
saying, “ijk is an even or odd permutation of the natural order 123,” one says, “ijk
is in cyclic or anticyclic order.” This makes no difference only as long as we restrict
ourselves to three dimensions. But the Levi-Civita symbol can be generalized to an
arbitrary number of dimensions d > 2, as we shall see shortly. The correct definition
of the Levi-Civita symbol, applicable in a space of an arbitrary number of dimensions
d,isinterms of even and odd permutations of the natural order 12 - - - d. The definition
is given in Eq.(5.29) below. Here is a trivial example to show that the definition
based on “cyclic or anticyclic order” is not consistent: In 2 dimensions, €, = 1 and
€21 = —1, although 12 and 21 are both in cyclic order.

In contrast to the Kronecker delta, €; changes sign if any two of its indices are
interchanged, i.e., it is a fotally antisymmetric tensor.

€ijk = —€ilj = €ij = —€kji = €jti = —€jik - (5.12)

This rank-3 tensor has 27 components, of which only 6 are nonzero. These are
€123 = €31 =€310 =1, €13p = €31 = €313 = —1 .Allcomponents inwhichanytwo
indices are the same vanish identically.

% 1. Let S;x and A, denote, respectively, tensors of rank three in three-dimensional
Euclidean space that are totally symmetric and totally antisymmetric under the
exchange of any pair of indices.

'T make a special mention of this point because a random sampling of standard texts shows that a
sizable number of them use this definition, but (regrettably) without mentioning the fact that it does
not extend to dimensions other than 3.
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(a) How many independent components does S; have, in general?
(b) Show that, in general, A;; has only one independent component.

The last result leads to an important conclusion:

e Every totally antisymmetric tensor A of rank 3 in three dimensions must neces-
sarily be a multiple of the Levi-Civita symbol!

That is, A must be of the form a € . That is why we may speak of the Levi-Civita
symbol as the totally antisymmetric tensor of rank 3, in three dimensions. We will
get to the proof of the fact that €;; is an isotropic tensor in a short while.

A fundamental relation between the Levi-Civita symbol and the Kronecker delta
arises when one of the indices of the former is contracted. This relation is given by

€jjk €imk = €ikj €lm = €kij €kim = i1 Sjm — Sim Oji - (5.13)

It follows from this relation that

€jjk €k = 268y, and hence € € = 3! = 6. (5.14)

% 2. Verify Eq.(5.13) by explicit enumeration of the components, and hence
Eq.(5.14) as well.

% 3. Show that (i) €ijk €kim €mni = —€jin (i) 8,’/ (Sjk Sk 85 = 3.

Contracting a symmetric tensor with an antisymmetric one: Since §;; is a symmetric
tensor and €, is antisymmetric, it follows that §;; €; = 0. To prove this formally, first
note that §;; €% = §j; €ix because both i and j are dummy indices, and we can replace
them with any other index symbol without changing the result; in particular, we can
exchange the two symbols. But, having done this, we use the fact that §;; = §;; because
d;; is a symmetric tensor; while €j; = —e;; because € is an antisymmetric tensor
under the interchange of any pair of its three indices. Therefore §;; €;x = —3;; €k -
But this is only possible if this quantity vanishes identically.

The same argument remains valid for the contraction of any symmetric tensor of
any rank with an antisymmetric tensor of any rank. If S;; = Sj;; denotes a symmetric
tensor of rank 2 and A; = —A;; an antisymmetric tensor of rank 2, then S;A; =
S;iAji = —S; Ajj = 0. More generally:

o LetS.;. be atensor (of any rank >2) that is symmetric in the indices i and j, and
let A.;;.. be a tensor (of any rank >2) that is antisymmetric in these two indices.
Then the contraction S..;;.. A..;;.. vanishes identically.

This property is an extremely useful one in practice.
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5.1.4 Dot and Cross Products in Three Dimensions

The scalar (or dot) product and the vector (or cross) product of any two vectors a and
b are very conveniently expressed using the index notation and the isotropic tensors.
We have

a~b=5ija,-bj=aibi. (515)

For the cross product, we know that

axb=c = (] =a2b3 —a3b2, (&) =a3b1 —a1b3, C3 =a1b2—a2b1.
(5.16)
This is compactly written, using the index notation, as’

o

Let a, b, ¢ be three non-coplanar vectors. As you know, the volume of the paral-
lelepiped formed by a, b, and c¢ is given, up fo an overall sign, by the scalar triple
producta - (b x ¢).(See Fig.5.1.) Moreover, this quantity remains unchanged under
a cyclic permutation of the three vectors, i.e.,

a-(bxe)=c-(axb)y=b-(cxa). (5.18)

This triple product is written compactly in index notation as € a; b; ¢k . In this form,
its cyclic invariance follows trivially, because any pair of dummy index labels can be
interchanged. Note that it can also be written in the form of a determinant, according
to

a1 by a, a az
a- (b X C) = €jk 4; bj Cr = | Ay b2 Cy | = bl b2 b3 . (5.19)
as b3 C3 C1 Cy C3

The vector triple product of the three vectors satisfies another well-known iden-
tity, namely,
ax(bxc)+bx(cxa)+cx(axb)=0. (5.20)

Equation (5.20) is actually a particular example of an important relationship called
the Jacobi identity between the elements of a certain mathematical structure called
a Lie algebra. We will encounter Lie algebras more than once in the sequel.’

2You should now abandon that rather misleading mnemonic for the cross product that is taught at
school, involving a “determinant” in which the first row has unit vectors while the other two rows
are the Cartesian components of the two vectors. It is obvious that such a hybrid cannot be a genuine
determinant! It is even less so when the second row comprises differential operators, as in the case
of the curl of a vector field.

3For instance, in Chap. 11, Sect. 11.3.1; Chap. 12, Sect. 12.4.2; and Chap. 15, Sect. 15.1.1.
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Fig. 5.1 The volume of the
parallelepiped formed by
three non-coplanar vectors
a, b, and c is given by (the
magnitude of) their scalar
triple product

Fig. 5.2 The resolution of a
vector a into a component
along another vector b and a
component normal to b

v

) b

% 4. You can derive the standard identities of elementary vector algebra very easily
with the help of the index notation. Using this notation and the summation convention,
establish Eq. (5.20) as well as the following identities:

(@ ax(xe)=(G@-c)b—(a-b)c

b) (axb)-(exd)=(a-c)(b-d)—(a-d)(b-c)

(c) @axb)yx(ecxd)y=[a-(ecxd)]b—-[b-(cxd)]a
=[d-(axb)lc—[c-(axDb)ld

You will need to make frequent use of the identity in Eq. (5.13).

Resolution of a vector along and normal to another vector: Here is a very simple
but useful result. Consider any two vectors a and b, as in Fig. 5.2. It is often required
to resolve one of them, say a, into a part a; that is directed along the other vector b
(the longitudinal part), and a part a; that is normal to b (the transverse part). If e,
denotes the unit vector in the direction of b, this resolution is obviously given by

a=a +a, =(e-a)e,+[a— (e a)e]. 5.21)

Using the fact that e, = b/b where b is the magnitude of b, this can be written in the
convenient form

(b-a)b (bxa)xbh
a= = =+ = .

(5.22)

% 5. Establish Eq. (5.22).

Orthogonality of rotation matrices: It is now very easy to see why an arbitrary
rotation of the coordinate axes about the origin is specified by an orthogonal matrix.
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Under such a rotation, the distance from the origin to any point remains unchanged.
Therefore r'? = r2, or

xéx}:xjsz ik Xj Xk - (523)
But we also have, as in Eq. (5.3), x; = Rjj x; . Therefore
xix)=RjxiRyxy = R")ji R xjxi = (R"R)ji. x; x . (5.24)

The two expressions for r'? must be equal to each other for every point in space.
Therefore we must have

(R'R)j =83, or R'R=1. (5.25)

For finite-dimensional square matrices, the left and right inverses are the same. Hence
RTR=1=RR"=1.

Proof that €. is an isotropic tensor: Under a rotation of the coordinate axes that is
described by an orthogonal matrix R, the Levi-Civita tensor transforms according to

€ ;jk = R,’[ ij Rk,,E[mn . (526)

By direct verification it follows that, for every set of values of the indices i, j and k,
we have
€ ;jk = (det R) € . (5.27)

But the orthogonality condition R RT = I implies that (det R)?> = 1, or det R = +1.
Therefore, as long as we restrict ourselves to the class of rotations corresponding to
det R = 1 (called proper rotations), the components of the Levi-Civita tensor remain
unchanged under rotations. More will be said in Sects.5.2.1 and 5.2.2 on the classi-
fication of rotations based on the sign of det R.

% 6. Verify that Eq.(5.26) leads to Eq. (5.27).

5.1.5 The Gram Determinant

If a, b, and c¢ are three non-coplanar vectors, and no two of them are parallel, the
volume of the parallelepiped formed by them cannot be zero. The converse of this
statement is also true. This means that the three vectors are linearly independent of
each other: that is, none of them can be written as a linear combination of the other
two.
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There is a very simple relationship between the determinant formed by the mutual
scalar products of any three vectors a, b, ¢ and the determinant representing the scalar
triple product a - (b x ¢) of these vectors (recall Eq. (5.19)). It is

ot a-aa-ba-c a; by ¢
G@ab,e) 2 |b-ab-bb-c|=|mbc| . (5.28)
c-ac-bec-c az bz c3

% 7. Verify Eq. (5.28).

G(a, b, ¢) is called the Gram determinant of the three vectors. The last term in
(5.28) is of course the square of the volume of the parallelepiped formed by the three
vectors. It follows that the Gram determinant cannot be negative.

e If the three vectors a, b, and c¢ are linearly independent, their Gram determinant
must be strictly positive.

If any of the vectors is a linear combination of the other two, then it lies in the plane
formed by these two vectors. The volume of the parallelepiped formed by the three
vectors, therefore, collapses to zero. Hence so does the Gram determinant.

e The Gram determinant condition for the linear independence of a set of vectors is
a general statement valid in any linear vector space.

We shall return to the general form of this condition in Chap. 10, Sect. 10.3.3. I men-
tion here that the well-known Cauchy—Schwarz inequality (which will be discussed
in Chap. 10) is a special case of the non-negativity of a Gram determinant.

5.1.6 Levi-Civita Symbol in d Dimensions

The definition of the Kronecker deltain Eq. (5.9) is valid as it stands in d-dimensional
space for any d > 2. It remains a tensor of rank 2 in all dimensions. On the other
hand, the Levi-Civita symbol in d-dimensional space is a tensor of rank d. It is
defined as

1, if ijip--- iy is an even permutation of 12---d

€iviyeniy def. —1, if iyip - - - iy is an odd permutation of 12---d (5.29)

0, in all other cases.

€i,i,--i, 18 @ completely antisymmetric tensor: it changes sign when any two of its
indices are interchanged. The tensor has d¢ components, of which all but d! com-
ponents are equal to zero. Of these, %(d!) components are equal to 1, and %(d!)
components are equal to —1. In two dimensions, we have €;; = €3 = 0, while
€10 = 1 and €] = —1.
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e The only independent isotropic tensors in d-dimensional Euclidean space are the
Kronecker delta and the Levi-Civita symbol.

e As in the case of three-dimensional space, the Levi-Civita symbol is essentially
the only totally antisymmetric tensor of rank d in d-dimensional Euclidean space.
Every totally antisymmetric tensor of rank d in this space must be a scalar multiple
of (S

% 8. Let ¢;;; denote the Levi-Civita symbol in four-dimensional Euclidean space.
(Hence the indices run over the values 1, 2, 3 and 4.)

(a) Show that the four-dimensional analog of Eq.(5.13) for the once-contracted
product €4y €1 1s given by

€ijkl €mnpl = 8im 6jn 8/([) - (Sim (Sjp 8kn + 5[11 csjp 5km
- Sin Bjm (Skp + Sip 8jm (Skn - 81’p (Sjn 8km .

(b) Hence show that

€ijkl €mnkl = 2! Bim 5jn — 8in (Sjm)
€jjkl €Emjkl = 3! (Sim

€kt i = 4!

under successive contractions of the tensor with itself.

5.2 Rotations in Three Dimensions

Rotations in three-dimensional space are of great importance in physics, for many
reasons. They occur everywhere, and on all scales, from subnuclear physics to cos-
mology. The algebraic and group theoretical aspects of rotations will be a recurring
theme to which we will return in several places: Chap. 11, Sects. 11.1.2 and 11.3.1;
Chap. 12, Sect. 12.4.2; and Chap. 15, Sects. 15.3.1 and 15.3.3. For the present, I turn
to another aspect of rotations in three-dimensional space.

5.2.1 Proper and Improper Rotations

We have seen that a rotation of the coordinate axes about the origin is specified
(in three-dimensional Euclidean space) by a (3 x 3) orthogonal matrix with real
elements. These matrices form the orthogonal group, denoted by O(3). Let R be a
rotation matrix, i.e., a matrix whose elements tell you what linear combinations of
the old coordinates yield the new coordinates. The orthogonality condition R RT = I
on the matrix R implies that (det R)? = 1. Therefore det R = +1.
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Rotations for which det R = +1 are called continuous or proper rotations. They
are obtainable “continuously from the identity transformation”—that is, they can be
built up by a succession of infinitesimal rotations, starting from the identity transfor-
mation (or no rotation at all). For this reason, the set of proper rotations is called the
connected component of the rotation group. Proper rotations constitute a group of
their own, the special orthogonal group SO(3). (S stands for special, which means
“unimodular” or “with unit determinant”, in this context.) SO(3) is a subgroup of
O(3). Proper rotations preserve the orientation or handedness of the coordinate sys-
tem. That is, a right-handed coordinate system remains right-handed after a proper
rotation; similarly, a left-handed one remains left-handed after a proper rotation.

In contrast, transformations with det R = —1 are called discontinuous or
improper rotations. They cannot be built up continuously from the identity trans-
formation: in general, they involve proper rotations together with reflections, such
that a right-handed coordinate system transforms to a left-handed one or vice versa.
Figure 5.3 shows what happens to the coordinate axes under a proper and improper
rotation, respectively. Examples of such orientation-reversing transformations in
three dimensions are the following:

(i) Reflection about any plane in space. For example, a reflection about the yz-
plane corresponds to a transformation under which x — —x, y — y, 7z +— z.
In general, the plane need not be one of the three planes normal to the three
Cartesian axes.

(ii) The parity transformationr — —r,ie.,x— —x, y > —y, 2+ —2.

Note that reversing the signs of any two of the three coordinates is actually a proper
transformation: The determinant of the corresponding matrix remains equal to +1.
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Fig. 5.3 a Proper and b improper rotation of the coordinate axes about the origin in three-
dimensional space
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For example, the transformation x — —x, y — —y, z > Z is just a rotation by an
angle m in the xy-plane. Improper rotations cannot form a subgroup of their own,
because they do not include the identity transformation. Moreover, the product of
two matrices, each with with determinant equal to —1, is a matrix with determinant
equal to +1.

The most important aspect of rotations in three dimensions is the following:

e Successive rotations do not commute with each other, unless they are rotations in
the same plane.

In other words, the net result of two successive rotations depends on the order in which
the two are carried out. This non-commutativity is crucial to the understanding of
rotations. It has truly profound consequences for the way the physical universe is.
In technical terms, the rotation group in three dimensions (in fact, in all dimensions
d > 3) is a noncommutative or non-abelian group.

5.2.2 Scalars and Pseudoscalars; Polar and Axial Vectors

We can now make a finer distinction among scalars, depending on their transforma-
tion properties under proper and improper rotations, respectively. A true scalar is a
quantity that remains unchanged under both proper and improper rotations; a pseu-
doscalar, on the other hand, remains unchanged under a proper rotation, but changes
sign under an improper rotation. Similarly, the components of a vector transform like
the coordinate themselves under both proper and improper rotations; a pseudovec-
tor behaves just like a vector under proper rotations, but has an extra change of sign
under improper rotations. The same remark applies to tensors and pseudotensors of
higher rank.

In the usual three-dimensional Euclidean space, one often uses the terms polar
vectors and axial vectors for vectors and pseudovectors, respectively.

— The dot product of two polar vectors is a scalar. So is the dot product of two axial
vectors.

— The dot product of a polar vector with an axial vector is a pseudoscalar.

— The cross product of two polar vectors, or that of two axial vectors, is an axial
vector.

— The cross product of a polar vector and an axial vector is a polar vector.

The last two statements above follow from the fact that
o the Levi-Civita symbol € is itself not a tensor, but rather, a pseudotensor.

This follows from Eq. (5.27), namely, € ;jk = (det R) €, . Hence € transforms like
a tensor under proper rotations of the coordinate axes, but changes sign under an
improper transformation. Examples of polar vectors include the position vector r of
a point (naturally, since we have used this to define a polar vector), the velocity v,
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the linear momentum p, the electric field E, etc. Common examples of axial vectors
are the orbital angular momentum L. = r x p and the magnetic field B.
Here is an exclusive property of three-dimensional space:

e It is only in three dimensions that the “cross product” of two tensors of rank 1
leads to a (pseudo)tensor that is again of rank 1. The expression €;; a; by has only
one free index, namely, i.

e Hence the “vector product” of two vectors, that again yields a vector, exists only
in three dimensions!

The physical consequences of this circumstance are profound.

The generalization of the cross product: Although the vector product of two vectors
is meaningful only in three-dimensional space, there does exist a generalization of
the cross product of any two vectors a and b in a space of any dimensionality d > 2.
It is defined as follows:

The “cross product” of two vectorsa and b et €jjors Qr by . (5.30)

Since two of the d indices of the Levi-Civita symbol get contracted, it is evident that
what remains is a totally antisymmetric pseudotensor of rank (d — 2). As expected,
this reduces to a pseudovector in the case d = 3. In two dimensions, the “cross
product” of two vectors a = (ay, a;) and b = (by, by) isdefined as €;; a; b; = a; by —
a by . This is a pseudoscalar, rather than a vector. The orbital angular momentum
L = xp, — yp, of a particle moving in two dimensions (i.e., in the xy-plane) is a
physical example of such a quantity.

5.2.3 Transformation Properties of Physical Quantities

Itis important and interesting to identify the transformation properties of all physical
quantities under both proper and improper rotations. How can this be done?

e The physical input needed for this purpose is the invariance, under the transfor-
mations concerned, of certain relationships between these quantities.
e Ultimately, such invariance must be deduced from experimental observation.

Here is a simple example of how this argument typically works. Consider a non-
relativistic particle of mass m moving under the influence of a force F. Newton’s
equation of motion (Newton’s II Law) for the particle reads

dv_

— =F. 5.31
m— (5.31)

We know that r is a polar vector, by definition. Therefore v = dr/dt is also a polar
vector, and so is dv/dt as well. (Space and time are distinct and do not get “mixed up”
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in nonrelativistic physics.) If we now assume that the equation of motion is invariant
under both proper and improper rotations of the coordinate system (a conclusion that
is ultimately based on experimental observation), then, since m is a scalar constant, F
must also be a polar vector. The assumption that m is a scalar is again an assumption,
of course, and must be checked out for consistency. Let us take it that this has been
done.

Recall the question asked at the beginning of Sect.5.1.1, and the subsequent
comments made there. It should now be clear that the invariance of Newton’s equation
of motion under coordinate rotations is made manifest by writing this equation as
a relationship between vectors! If I find that mdv/dt = F in my coordinate frame,
and you find that the force and acceleration are F’ and dv’/dt, respectively, in your
coordinate frame (which is tilted with respect to my set of axes), then it is guaranteed
that mdv'/dt = F’. In fact, if we know precisely how your frame is oriented with
respect to mine, we can calculate both F’ and dv’/dt from a knowledge of F and
dv/dt, because these quantities are vectors.

Note, in passing, that ¢ is the same in both frames of reference. A spatial rotation
does not affect the time, of course. Further, + would continue to remain the same in
both frames even if the frames were moving with a uniform velocity with respect to
each other, in Newtonian mechanics—but not so when special relativity is brought
in. This is because Newtonian mechanics corresponds to the limit in which the
fundamental speed ¢ — oo.

Returning to the deduction that F is a polar vector, we can use this fact to draw
further conclusions. It is a manifest (but profound) fact that Newton’s equation of
motion remains valid for all kinds of forces—mechanical, electromagnetic, and so
on. In particular, suppose the particle has a charge e (once again, assumed to be a
scalar constant), and moves in an applied electric field E and magnetic field B. The
Lorentz force on it is given by the familiar expression

F = ¢[E + (v x B)]. (5.32)

It follows that both E and (v x B) must be polar vectors. But a polar vector changes
its sign under the parity transformation r + —r. Since v itself changes sign under
a parity transformation, B cannot do so. Hence the magnetic field B must be an
axial vector, in contrast to the electric field E. It now follows that, while E? and
B? are scalars, E - B is a pseudoscalar; (E x B) is again a polar vector, and so on.
We can now go on to connect E and B to other physical quantities such as charge
and current densities, scalar and vector potentials, etc. If these relationships are also
invariant under both proper and improper rotations, we can deduce the transformation
properties of those other quantities as well. I will return to electromagnetism in
Chap. 9, after a discussion of vector calculus in Chaps. 6 and 8.

Another interesting improper (or discontinuous) transformation is time reversal,
t — —t. The spatial independent variable r is unaffected by time reversal. Hence
v = dr/dt changes sign under this transformation, while the acceleration dv/dt
does not. In the absence of dissipative forces like friction, we have reason to believe
that Eq. (5.31) is time-reversal invariant. Therefore a conservative F does not change
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sign under time reversal. In turn, this means that E remains unchanged, while B
changes sign, under time reversal.

A final point:

e It is important to realize that that the transformation properties of any given, well-
defined physical quantity are fixed once and for all, independent of the specific
circumstances in which it occurs. If it were not so, such properties would not be
of much use.

For example, the electric field E is a polar vector that does not change sign under
time reversal, regardless of whether E is produced by static charges (i.e., it is an elec-
trostatic field) or by a time-varying magnetic flux (i.e., by electromagnetic induction).

% 9.Letr, pand L = r X p be the position, linear momentum, and angular momen-
tum, respectively, of a particle moving in space. Consider the following quantities:
r-p ()rxL Gi)pxL Gv)(rxL)-(pxL) (v)(r xL) x (p x L).

(a) Identify the scalars, pseudoscalars, polar vectors, and axial vectors among the
above.
(b) Find the behavior of each quantity under time reversal.

5.3 Invariant Decomposition of a 2nd Rank Tensor

5.3.1 Spherical or Irreducible Tensors

I conclude this chapter with a discussion of a feature of Cartesian tensors of rank 2
that is of considerable importance in applications. Numerous physical quantities are
second-rank tensors. Examples include

mechanical stress and strain;

dielectric permittivity and magnetic permeability, and the associated electric and
magnetic susceptibilities;

the moment of inertia of a mass distribution;

— the quadrupole moment of a charge distribution;

the Maxwell stress tensor of an electromagnetic field;

the “order parameter” in various types of liquid crystals;

and so on. In fact, whenever two vector fields u and v are connected to each other by
a linear relationship of the form u; = ¢;; v; , a second-rank tensor appears naturally
as the set of coefficients c;; .

It turns out that second- and higher rank Cartesian tensors are reducible, in the
following sense. Under a rotation of the coordinate axes, each component of the new
tensor is a linear combination of all the components of the original tensor, in general.
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However, certain linear combinations of components transform among themselves—
that is, the primed version of each such combination involves the same components
as in the original combination. These special linear combinations constitute what
are called spherical tensors. They correspond to irreducible representations (or
“irreps”, for short) of the rotation group. A general Cartesian tensor of rank £ in three
dimensions has 3¢ components. In contrast, a spherical tensor of rank £ only has (2¢ +
1) components. For £ = 0 and ¢ = 1, the number of components is, respectively, 1
and 3 for both Cartesian and spherical tensors. But each Cartesian tensor of rank
£ > 2 is actually “made up” of irreducible spherical tensors of different ranks.

In the case £ = 2, the break-up into irreps is as follows. Given an arbitrary Carte-
sian tensor T (which can be written as a (3 x 3) matrix T), we can write it as the
sum of a symmetric tensor and an antisymmetric tensor, according to

Sy = 5T+ T;p) = Sji and Ay = 5(T; — Tj)) = —Aji . (5.34)

where

The symmetric tensor §;; has 6 independent components. The antisymmetric tensor
Ajj has only 3 independent components, as its diagonal elements vanish identically.

e The break-up in Eqgs. (5.33)—(5.34) is rotationally invariant: under an arbitrary rota-
tion of the coordinates axes, the transformed tensors Si} and A u remain symmetric
and antisymmetric, respectively.

e The three independent components of the antisymmetric part can be identified
with the components of a vector, according to

b = (A3, A3, App) or by = € Ajp = € Tir . (5.35)

A vector is a spherical tensor of rank £ = 1.
e The trace of the tensor,

Tr T =Ty +Tyn+Ts3 =581+ 82+ 53, (5.36)
is a scalar, i.e., a spherical tensor of rank £ = 0.
e When the trace part is subtracted out of the symmetric part of the tensor, we are
left with a traceless symmetric tensor with 5 independent components. This is a
spherical tensor of rank ¢ = 2, given by

Sy =8;— (T 1)8; = 3(T; + Tp) — X(Tr 1) 5. (5.37)

To summarize:
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o A general Cartesian tensor of rank 2 in three dimensions, 7j; , can be decomposed
into a scalar Tr T', a vector €;; T , and a traceless symmetric second-rank tensor
(a spherical tensor of rank 2) Sj; .

As a count of the number of components, this amounts to saying that
3x3=1+3+5.

I'will not digress here into the group-theoretic interpretation of this seemingly trivial
fact.

% 10. The foregoing statements are easily established by using the fact that the
transformation law for a second-rank tensor is given by Eq. (5.5) or (5.8).

(a) Show that the break-up of a second-rank tensor into a symmetric part and an
antisymmetric part is rotationally invariant. That is, the symmetric part of the
transformed tensor ng is the transform of §;;, and its antisymmetric part is the
transform of A;; .

(b) Show that the trace of the tensor is rotationally invariant.

(c) The fact that §;; is an isotropic tensor implies that

ij>

S,=8,—XTrT8;.

Check that §ZJ is also symmetric and traceless.
(d) Show thatb = (A3, A3y, Aj2) transforms like a vector under rotations.

5.3.2 Stress, Strain, and Stiffness Tensors

A physical application of Cartesian tensors is provided by the theory of elasticity.
The stress tensor o, with components o;;, is a symmetric tensor of rank 2. Consider
a cube of the medium with its principal axes aligned along the coordinate axes. (See
Fig.5.4.) The diagonal components oy, 02, and o33 represent uniaxial tension (or
compression) along each of the coordinate axes. This is, of course, the kind of stress
one applies in an experiment to measure Young’s modulus for a material. The off-
diagonal terms o1,, 023 and o3 represent the shear stresses between the respective
opposite pairs of faces of the cube. The symmetry of the tensor implies that the shear
components o;; and oj; are equal.
The tensor '

O'l-;m = %(O’]l + 022 +U33) 5,:]' = %(TI‘O’) 8,']‘ (538)
is called the dilatory or hydrostatic stress. The hydrostatic pressure is given by
P = —% Tr 0. Being proportional to the trace of a tensor, the pressure is a scalar, and
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Fig. 5.4 a The tensile (or compressive) components of the stress tensor; b the shear components
012, 023 and o3]. For clarity, the other three shear components are not shown. In each shear, it is
assumed that the face opposite the one on which the stress is applied is held fixed

hence rotation-invariant—alternatively, it is the same in all directions at any point in
a fluid at rest.*

e This fact, in turn, leads to Pascal’s Law and its numerous applications in
hydraulics.

Subtracting out the hydrostatic stress from the stress tensor, we get a traceless
tensor called the deviatoric stress:

Ul;lev =05 — o‘gil =0y — %(TI'O’) 51:/* = 0jj —{-P(S,‘j . (5.39)

Exactly the same sort of decomposition applies to the symmetric strain tensor & (with
components &) as well. The hydrostatic or volumetric strain is given by

el =1 (Tre) ;. (5.40)

y

The deviatoric strain is the traceless tensor given by

e?f" =g — sg-“ =g;— 1(Tre) 5. (5.41)

4Recall the definition of pressure that you learnt at school: the pressure at a point in a fluid is the force
per unit area on an infinitesimal area element immersed in the fluid. But forces and area elements
are vectors, and it is obviously meaningless to divide by a vector. So how is one to understand the
definition? The answer is that the area element may be oriented in any direction, and the force is
along its normal. We can now understand the reason why this is so: the rotational invariance of the
trace.
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Hooke’s Law is applicable in the regime of low strains, or linear elasticity. For a
linearly elastic solid, the general form of Hooke’s Law is given by

Ojj = Cijkl €kl » (542)

where the fourth-rank tensor cy is called the (elastic) stiffness tensor. Its com-
ponents represent the different elastic moduli of the medium concerned. A formal
inversion of Eq. (5.42) leads to a relation of the form

Eij = Sijkl Okl (5.43)

where s is called the compliance tensor. At first sight, it appears that the stiffness
tensor c;j; has 3* =81 independent components. But several symmetries exist, that
help reduce this number considerably. Since o;; = 0j; , and gy = &y , it follows from
Eq.(5.42) that

Cijil = Cjikl = Cijik = Cjilk - (5.44)

This reduces the number of independent components of c;; to 6> = 36.

Now, the stress is related to the force on a volume element of the medium. Recall
that a conservative force field can be obtained as the gradient of a scalar poten-
tial energy. (We will define and discuss the gradient of a scalar field in Chap.6,
Sect.6.2.1.) The gradient involves partial derivatives with respect to the displace-
ment. The strain, in turn, is related to the displacement. It is not surprising, therefore,
that the stress is also expressible as the derivative of some kind of “potential” with
respect to the strain: o;; = d®/de;, where @ is a certain scalar function. It then
follows from Hooke’s Law that the compliance tensor is the second derivative of the
potential, according to

GRS

88k1 88,']' ’

(5.45)

Cijkl =

Since the partial derivatives can be taken in either order, we have the additional
symmetry property
CijkI = Ckljj - (5.46)

% 11. Show that the symmetries implied by Eq. (5.44) reduce the number of inde-
pendent components of the stiffness tensor from 81 to 36, and that those implied by
Eq. (5.46) further reduce this number to %(6 x 7) =21.

Depending on the symmetries present in the medium, this number gets even further
reduced. The elastic properties of crystals belonging to the various crystallographic
classes have been classified. For crystals belonging to the lowest symmetry class,
triclinic, the number of independent elastic moduli is nine. As the degree of symmetry
increases from triclinic symmetry to cubic symmetry, the number of independent
elastic moduli decreases to three. Finally,

e for a fully isotropic medium, the number of independent elastic moduli is just 2.
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As you know, the most commonly used moduli in the case of an isotropic medium
are Young’s modulus Y, the bulk modulus K, the shear modulus G, and Poisson’s
ratio, v. There are two independent relations between these four quantities. Recall
the well-known relation between the first three of these,

> _ 1 + ! 5.47)

Y G 3K’ ’
(You would have encountered this relation in an elementary course customarily called
“Properties of Matter”.) In terms of Poisson’s ratio, one also has the relations

Y =3K(1 —2v) =2G(1 4 v). (5.48)

Incidentally, these relations show why Poisson’s ratio must always lie between % (the
upper bound) and —1 (the lower bound).’ Bear in mind that Egs. (5.47) and (5.48)
are only valid for an isotropic medium.

Hooke’s Law for an isotropic medium reduces to a particularly simple form:

oj =0 + 0/ =3Ke' +2G e . (5.49)

The volumetric strain thus represents the compression of the medium, while the
deviatoric strain represents its shear. But the decomposition of the stress and strain
into their dilatory and deviatoric parts is rotationally invariant, being a decomposition
into irreps of the rotation group. We can therefore equate the respective dilatory and
deviatoric parts in Eq. (5.49). It follows that, for an isotropic medium,

P=—-KTre and of =2Ge&j". (5.50)

5.3.3 Moment of Inertia

Symmetric second-rank tensors also occur naturally in the description of mass and
charge distributions.

Consider a mass distribution of volume V' given by the density function p(r). The
moment of inertia tensor (about the origin of coordinates) is given by

I < /dV(r28,-j —x; %) p(r), (5.51)
Vv

3Yes, there do exist media with negative values of Poisson’s ratio! Stretching such a medium in one
direction causes it to bulge out in transverse directions as well. To get an idea of how this can happen,
pull out a ball of loosely crumpled paper slightly by holding it at two diametrically opposite points.
This is a (very) rough analogy, but it suggests how certain media comprising “loose” networks of
bonds could have negative values of v.
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where the x; are the position coordinates of the volume element dV, located at a
distance r from the origin. Note that /;; is a symmetric tensor (but not a traceless one).
We may write the components of the tensor in the form of a symmetric matrix with real
elements. These properties imply that the matrix can be diagonalized by a similarity
transformation implemented by an orthogonal matrix. The physical meaning of this
statement is as follows: we are guaranteed that there exists a rotation of the coordinate
axes such that, in the new coordinate system, the moment of inertia tensor has only
diagonal terms, with all the off-diagonal terms identically equal to zero. The new
axes are called the principal axes of inertia, and the diagonal elements, which are
denoted by I;, I, and I3, are called the principal moments of inertia. The rotational
invariance of the trace implies that

Li=h+L+15L= Zde r? p(r). (5.52)
v

Ellipsoid of inertia: Now, the equation

i+t (5.53)

where a, b and c are positive constants, describes the surface of a solid figure called
an ellipsoid. The ellipsoid is centered at the origin, with its principal axes along
the coordinate axes, as shown in Fig.5.5. Suppose the ellipsoid has a uniform mass
density and a total mass M. Then, in this coordinate system, its moment of inertia
tensor has only diagonal elements, given by

L=iM® +c*), L=1iM(P+d), L=1iM(a+b). (5.54)

e Since the moment of inertia tensor of any mass distribution can be diagonalized,
in the principal axes system the mass distribution is effectively that of an ellipsoid.
The latter is called the ellipsoid of inertia of the mass distribution.

The equality of two (or all three) of the principal moments of inertia is an indication
of additional special symmetries in the mass distribution. For instance, ifa = b > ¢,

Fig. 5.5 The ellipsoid of
inertia for a mass distribution
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the ellipsoid becomes an oblate spheroid (which looks like a sphere flattened at the
poles). This figure may be obtained by rotating the ellipse

Tt (5.55)

about its minor axis (the z-axis). In this case Iy = I, = %M (@® + ¢?), while I; =
%Ma2. Hence I} = I, < I3. On the other hand, if a > b = ¢, we get a prolate
spheroid (shaped like a rugby football) that is obtained by rotating the same ellipse
about its major axis (the x-axis). In this case I} = $Mc?and, = I; = %M @+ ).
Hencel, <L, =15.

A transformation to the principal axes frame is very advantageous when we con-
sider the rotational dynamics of a rigid body. Here is a short digression.

5.3.4 The Euler Top

The equations of motion of a rigid body rotating freely about a fixed point (the so-
called Euler top) take on a particularly simple form in the principal axes frame. Let
 denote the instantaneous angular velocity of the body. Then its components satisfy
the equations of motion (called Euler’s equations)

Loy =y —B)wws, haoy= Uz — 1) wsw, oy =0 —L)ww, (5.56)

where an overhead dot denotes the time derivative. These coupled nonlinear equa-
tions constitute an integrable dynamical system with interesting solutions. Observe
that, in the general case in which I, I, and I3 are all unequal, it is not possible for all
three right-hand sides in Eqgs. (5.56) to have the same sign. This fact has implications
for the stability of rotational motion about the different principal axes—specifically,
the so-called tennis racquet theorem. (Check it out in a text on mechanics.)

% 12. For the dynamical system specified by the equations of motion (5.56), show
that there are two independent quadratic functions of the w;, call them F (w;, w2, w3)
and F;(w, w, w3), that are constants of the motion, i.e., they remain at their initial
values as time elapses.

Equation (5.56) are three coupled first-order differential equations for the dynamical
variables w;, w,; and w3 . The phase space of this dynamical system is therefore
three-dimensional. For any given set of initial values of the w;, the intersection of
the (two-dimensional) surfaces F; = constantand F, = constantis one-dimensional.
This intersection must therefore correspond to the phase trajectory of the system. Can
there be a third, independent, time-independent constant of the motion in this case?
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No, because the intersection of three surfaces is generically just a point (or discrete
set of points), and that would imply that no motion occurs.

5.3.5 Multipole Expansion; Quadrupole Moment

The multipole expansion of the potential due to a general charge distribution in
electrostatics provides another example of the use of spherical tensors.

Let ¢ (r) be the electrostatic potential at the point r due to a static charge distri-
bution specified by a charge density p(r’) in space. Now, it turns out that the basic
partial differential equation satisfied by the potential is Poisson’s equation, as you
will see in Eq. (9.16) of Chap.9, Sect.9.1.5. This equation must be augmented with
appropriate boundary conditions to deduce any specific solution of the equation. For
our present purposes, let us assume the natural boundary condition ¢ (r) — O as
r — oo along any direction in space. I will return to the formal solution of Poisson’s
equation in Chap.29, Sect.29.3.1 to Sect.29.3.3. Here, I shall merely write down
the solution based on Coulomb’s Law plus the superposition principle. The latter is
applicable because Poisson’s equation is a linear equation for ¢. The solution is

<z>()——/3/p(r (5.57)

r—r'|

Observe that the boundary condition ¢ — 0 as r — o0 is implicit in this expression.

For simplicity, and so that we need not worry about questions of convergence,
let us assume that the distribution is compact: that is, all charges are restricted to
some finite volume V about the origin of coordinates (see Fig.5.6). Now consider

Fig. 5.6 Potential at r due to 24
a charge distribution in V
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the case when r > r’ for allr’ € V. The multipole expansion of the potential is an
expansion of ¢ (r) in inverse powers of r. It reads as follows®:

P,‘X,‘ i Xi Xj iik Xi Xj X,
p(r) = {9+7+Q151+ka71k+...}, (5.58)
drey | 1 r r r
where the coefficients Q, P;, Qjj, Q. - .. of the successive terms are the multipole

moments corresponding to the charge distribution.

e The multipole moments of a charge distribution are spherical tensors of rank
£=0,1,2,... thatinvolve, respectively, the zeroth, first, second, . .. moments of
the charge density.

The first of these is the monopole moment or total charge. This is a scalar:

0= /d3r/p(r’). (5.59)
\%4

The second coefficient is the dipole moment of the distribution. This is a vector with
components

P, = /d3r/x;p(r’). (5.60)
|4

The third coefficient is the quadrupole moment. This is a symmetric traceless tensor
of rank 2 with components

Qi = %/d3r/ (3x;x]’» —r? (Sij) p(r’). 5.61)
\%4

Very far away from the charge distribution, the potential looks like that of a point
charge Q located at the origin, to leading order.

e The dipole, quadrupole and all higher moments of a spherically symmetric charge
distribution vanish identically.

e The successive terms in the expansion of Eq.(5.58) represent the effects of the
departure from spherical symmetry of the charge distribution.

% 13. The multipole moments defined above are the moments about the origin of
coordinates. Except for the total charge, the others are dependent, in general, on the
specific choice of the origin. It turns out, however, that a given moment is independent
of the location of the origin if all the lower moments vanish identically.

SIn Chap. 16, Sect. 16.4.8, I will discuss a related aspect: the expansion of the so-called Coulomb
kernel |r —r’| ~lin spherical harmonics, i.e., its “factorization” in terms of functions of the spher-
ical polar coordinates of r and r’, respectively. See Eq. (16.139).



5.3 Invariant Decomposition of a 2nd Rank Tensor 69

(a) Show that the dipole moment P is unchanged under a shift of the origin of
coordinates if the total charge Q = 0.

(b) Show that the quadrupole moment Q;; is unchanged under a shift of the origin
of coordinates if Q = 0 and P = 0.

5.3.6 The Octupole Moment

Textbook discussions of electrostatics usually do not go beyond the quadrupole term
in the multipole expansion of the potential. Let us therefore go a step further and con-
sider the next term (the octupole term) in the expansion of the potential in Eq. (5.58).

What can the third-rank tensor Q;; possibly be? It must essentially involve the
third moment of the charge density, given by

/dBr'x;x‘;x;(,o(r’). (5.62)
14

The third-rank tensor in (5.62) has 33 = 27 components. On the other hand, the
octupole moment must be an irreducible spherical tensor of rank ¢ = 3. It must
therefore have only 2¢ + 1 = 7 independent components. The 27 components of the
Cartesian tensor get reduced to the 7 independent components of the spherical tensor
as described below.

The factor x; x; x; with which Qy is contracted in Eq. (5.58) is totally symmetric
in all three of its indices, i.e., under the exchange of any pair of indices. Hence
Q;ix must also be a totally symmetric tensor of rank 3. This symmetry is already
manifest in the expression in (5.62). But you have already seen (in Sect.5.1.3) that
such a tensor has only 10 independent components. The final reduction from 10 to
7 independent components arises as follows. We can contract any two of the three
indices in (5.62), to produce a vector. If i and j are contracted, for instance, we have
Xixix,=r 2 x. , with one free index—that is, a vector. (The factor r 2 is a scalar.)
This vector part, which has 3 components, must be subtracted appropriately from the
tensor, to get a 7-component spherical tensor of rank £ = 3. Clearly, one must allow
for the contraction of all three pairs of indices (i and j, j and k, k and i) in a symmetric
fashion, so as to preserve the totally symmetric nature of the tensor. Moreover, the
subtraction must be such that the contraction of any two of the three indices in the
resultant tensor makes the tensor vanish. The irreducible tensor we seek is then given
by

O = %/43# [5xixjxi =2 (x) 8+ x) 8+ x5.85) | o). | (5.63)
\4
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It should be clear that the odd-rank tensor Q;; cannot contain any scalar part, which
corresponds to the even value £ = 0.

% 14. Following the argument outlined above, derive Eq. (5.63).

5.4 Solutions

1. (a) The independent (i.e., independently specifiable) elements of the totally sym-
metric tensor S;; can be classified as follows: those with (i) all three indices the
same, (ii) two indices the same, and (iii) all three indices different. Since the tensor
is totally symmetric, any component is unchanged in value under a permutation of the
indices. Hence there are 3 4 (3 x 2) + 1 = 10 independent elements. One possible
set of these is given by

Sttty 8222, 83335 S112, S113, S221,5 5223, 8331, S332 5 Si23 .

Specifying S}»3, for instance, also specifies the elements S132, S213, S231, S312 and
S321 , since they are all equal to each other by the symmetry of the tensor.

(b) In the case of the totally antisymmetric tensor A;j , it is clear that all elements
in which any two indices are the same vanish identically. This leaves six nonzero
elements. But once we specify any one of these, say Aj»3, the other five are also
specified: we have

Az = Az = Aoz = —A132 = —A3 = —As .
Hence the number of independent components of A is just 1. >

8. (a) It is evident that the first term must be 8, 8, 8, . Consider the array (4 5).

Permute the symbols in the lower row among themselves, changing sign with every
transposition. >

9. (a) The quantities in (i) and (iv) are scalars. Those in (ii) and (iii) are polar vectors,
while that in (v) is an axial vector.

(b) Under time reversal, the quantity in (iii) does not change sign, while all the others
do. >

10. (a) and (c) involve straightforward verification.

(b) is trivially demonstrated, since T’ is obtained from 7 by a similarity transforma-
tion. Use the cyclic property of the trace of a product of (finite-dimensional) matrices.
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(d) It is evident that the components of b’ are obtained from the components of b by
a linear homogeneous transformation. Now start with

/ ’
b = €k Ay = €iji Rjt Rign Ajom

(since € is anisotropic tensor). Use the orthogonality property of the rotation matrix
Rtoshowthatb b} = b; b; . Hence the components b; transform like the coordinates
themselves, which means that b is a vector. >

12. It follows from Eqs. (5.56) by inspection that the time derivatives of the following
quantities vanish identically:

Fi=hol+ho}+ Lot and F, =1} o} + 17 0} + I3 0} .

Observe that F; is the square of the total angular momentum of the body about the
origin. >

13. Let the origin of coordinates be shifted to the point a, where a is a constant vector.
A point located at r’ in the original coordinate system is now located atr” = r’ — a.
Setr’ =r” + ain the formulas (5.60) and (5.61), and calculate the new moments. »

14. In order to arrive at the overall factor of % on the right-hand of (5.63), use the
simple trick of looking at a special case! Instead of a charge distribution, take a unit
point charge located at any point r " in space, other than the z-axis. Let r be a point on
the positive z-axis, so thatr = (0, 0, r), such that r > r’. Now expand the “Coulomb
kernel”

r—r'|"'=("-2r-r' + r’z)_l/2 = (r* —2rr' cos 0’ + r’z)_l/2

in powers of (r’/r) using the binomial theorem, and pick out the coefficient of the
term proportional to (r'3/r*). In Chap. 16, Sect. 16.4.1, you will recognize that the
quantity %(5 cos® 8’ —3cos 0’) is just the Legendre polynomial P3(cos 8'). »



Chapter 6 ®)
Vector Calculus g

In this chapter, we recapitulate the basic ideas of vector calculus in the familiar
Euclidean space of three dimensions. As you are likely to be familiar with a good
portion of this material, the discussion will be rather brief for the most part. Attention
will be restricted, as in Chap. 5, to ordinary vectors under rotations of (3-dimensional)
Euclidean space. I shall not consider curved spaces, covariant and contravariant
vectors, etc., or discuss the differential geometric approach.

6.1 Orthogonal Curvilinear Coordinates

Orthogonal coordinate systems are those in which the basis vectors are normal to each
other. The basic example is the Cartesian coordinate system, in which (e,, e,, €;)
comprise an orthogonal basis. Curvilinear coordinate systems are those in which the
basis vectors are position-dependent, i.e., their directions do not remain the same
at all points in space, unlike the Cartesian basis. However, at each point, the basis
vectors form a mutually orthogonal triad.

6.1.1 Cylindrical and Spherical Polar Coordinates

Let us recall some elementary facts about the most common curvilinear coordinate
systems. I will use standard notation:

r for the position vector of an arbitrary point P in 3-dimensional Euclidean space;
(x, y, z) for its Cartesian coordinates;

(o, ) for plane polar coordinates in the (x, y) plane;

(0, ¢, z) for its cylindrical polar coordinates;

(r, 8, ) for its spherical polar coordinates, with the z-axis as the polar axis.

Referring to Fig. 6.1, we have the familiar relations
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Fig. 6.1 Plane, cylindrical, Az
and spherical polar
coordinates
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(6.1)
The ranges of the non-Cartesian coordinates are
0<p<0,0<p<21,0<r<o00,0<0<m. (6.2)

The right-handed unit vector triads in the Cartesian, cylindrical polar, and spherical
polar systems are (ey, €, €.), (e,, €., €;) and (e,, ey, e,), respectively. This implies,
for instance, that

€ Xe =¢€,, € xXe,=¢€, €,Xe =e. (6.3)

Figure 6.2 shows the unit vectors at an arbitrary point in spherical polar coordinates.
The position vector of any point is given by

r=xe,+ye, +ze =pe,+ze =re,. (6.4)
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It is important to recognize that the unit vectors (e,, ey, €;) in Cartesian coordinates
are constant vectors, i.e., they are not functions of the coordinates themselves. In
marked contrast,

e the unit vectors in curvilinear coordinate systems are functions of the coordinates,
as the directions of these vectors differ from point to point.

% 1. Find all the partial derivatives listed below.
de, Oe, Oe, Oe, Oe, Oe,

90 0e D2 B0 Be B
b 0o 06 v de D e de, de. de.
Or’ 00 0p’ Or 09 Op  Or 90 dp

(c) Express the unit vector e, in spherical polar coordinates.

(a)

The line element dr (sometimes also written as d£) is given by

dr = (dx) ex + (dy) e, + (dz) e,
= (do)e, + (0dyp)e, + (d2) e, (6.5)
= (dr)e, + (rdf) ey + (r sin 0dyp)e,.

The square of the distance between the points r and r + dr is

(ds)* = (dx)* + (dy)* + (d2)*
= (do)* + 0* (dp)* + (d2)? (6.6)
= (dr)> + r* (d0)* + r? sin® 0 (dp)?.

The gradient operator V, sometimes referred to as the del operator, is a vector
differential operator, given by

V=e E—Fe 3+e 3
S Tox o Yoy oz
0 e, 0 0
—e,— + 2 — 6.7
e‘3g+ 0 Oy “0z ©.7)
0 0
_e dyn0 & O
Or r 00 rsinfdp

It is very convenient to write the gradient operator in Cartesian coordinates as

V= (8/8x1 s 8/8)(2, 8/8x3) = (01, 0», 03), so that

e the del operator is very compactly represented in index notation by 0;.
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6.1.2 Elliptic and Parabolic Coordinates

While plane polar, cylindrical polar and spherical polar coordinates are the most fre-
quently used curvilinear orthogonal coordinate systems, there exist numerous other
systems of orthogonal coordinates. These are useful in exploiting specific symmetries
(other than cylindrical or spherical symmetry) that may be present in some cases. A
few of the general results are quoted below, for completeness.

The starting point is the expression for (ds)?, the square of the distance between
the points r and r 4+ dr. Let (&1, &, &) denote the orthogonal coordinates. Then
(ds)? can be written in the form

(ds)? = h? (d&)? + h3 (d&)* + h3 (d&3)?, (6.8)

where the quantities /; are functions of the coordinates, and are called scale factors.
The gradient operator is given by

2) 3)

e 9 e 9 e 9
vt ¢ ¢ 9 6.9)
hy 06 hy 0&%  hy 0& (

where (egl) , eéz) , e?)) is the unit vector basis in the (§;, &, &) coordinate sys-

tem. In the Cartesian coordinate system, the scale factors (4, hy, h3) are obvi-
ously (1, 1, 1). In cylindrical and spherical polar coordinates they are (1, o, 1) and
(1, r, r sin 0), respectively.

The reduction of such formulas to the case of two dimensions is straightforward.
Here are a couple of examples of curvilinear coordinate systems in the plane.

Elliptic coordinates (u, v) in the xy-plane are given in terms of the Cartesian coor-
dinates by
x = a (cosh u) (cos v) and y = a (sinh u) (sin v), (6.10)

where 0 < u < 0o, 0 <wv < 27, and a is a positive constant.

% 2. The curves u = constant are ellipses, while the curves v = constant are hyper-
bolas. They comprise two orthogonal families of curves (i.e., they intersect each
other at right angles).

(a) Verify the statement made above. Observe that the pair of values (v, 27 — v)
together comprise a branch of a hyperbola. The values v = 0, %71‘, , %w, and
27 are obviously limiting values when the hyperbola degenerates to straight line
segments.

(b) Sketch the curves

Hu=0 (i) u=1 (iii)) v =0, 27
(iVVv=qm3r Mv=imir (vDv=r.
(c) Show that the scale factors are iy = hy = a(sinh? u + sin® v)!/2.
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Parabolic coordinates (£, n) in the xy-plane are given in terms of the Cartesian
coordinates by

x=3& -7 and y=¢£n, (6.11)

where —o0 < £ <ooand 0 <7 < oo.

% 3. The curves £ = constant and the curves 77 = constant are two mutually orthog-
onal families of parabolas, with the origin as the common focus and the x-axis as
the common axis of all the parabolas.

(a) Verify the statement made above.
(b) Sketch the curves
Hn=0 @G) =0 (i)E=n (@(v){=-n
V) &=1 (vi) £ =—1 (vi) n = 1.
(c) Show that the scale factors are h; = hy = (2 +1n%)!/%.
(d) This system of coordinates can be extended to three-dimensional parabolic coor-

dinates (£, 1, ) by rotating the parabolas about the x-axis (their common axis).
We now have

x=3(8 =), y=E&ncosp, z=~Ensin g

Show that the scale factors are now h; = hy = (€2 +n*)'/2, h3 =&

6.1.3 Polar Coordinates in d Dimensions

The extension of “spherical” polar coordinates to an arbitrary number of dimensions
d > 3 is useful in many applications. I, therefore, digress briefly to discuss this
generalization.

Let (x, x2, ..., x4) be the Cartesian coordinates of a point in d-dimensional
Euclidean space. The “ultraspherical” polar coordinates comprise (i) the radial vari-
able r, (ii) a set of (d — 2) “polar” angles 0, , ..., 6,5, and (iii) an azimuthal angle

. The ranges of these variables are

0<r<oo, 0<f6;<m (1<j<d-2), and 0<¢p <27. (6.12)

The Cartesian coordinates are related to the corresponding polar coordinates by

x1 =r cos b
Xy =r sin 0, cos 6,
x3 =r sin 6; sin 6, cos 63
(6.13)
Xg—1 = F sin 6y sin 0 ... sin 6;_, cos ¢
Xg =vrsin @ sin O ... sin 6,5 sin .
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The inverse transformations are
ro= (a2
0 =tan"' [(xF,, +--+xDP/x;] A<j<d-2) (6.14)
¢ =tan"" (x4/xq-1).

In the case d = 3, this corresponds to the identifications x; =z, x, = x, x3 =Y,
with the z-axis chosen to be the polar axis.

The volume element is, of course, dV = dx; ... dx; in Cartesian coordinates.
In polar coordinates, it is given by

dV = r?=1 (sin 6,)?72 (sin 6,)?73 ... (sin O4_2) drdb, ... dO;_»dyp.| (6.15)

A pair of important and useful formulas may now be deduced.

Volume of a hypersphere: A ball or hypersphere of radius R in d-dimensional
space, centered at the origin, is the set of points satisfying the condition

(xF 4+ xH? <R. (6.16)

The “volume” of this ball is given by

R T s 2w
Vi(R) = / drri! / do; (sin 6,)472 ... f dfy_» sin 0;_» / de. (6.17)
0 0 0

0

We now need the value of the definite integral fOWdQ (sin 0)'. This is given by the
formula (3.21) of Chap. 3, Sect.3.1.5. Equation (6.17) then yields, after simplifica-
tion,

242 Rd

(6.18)

Surface of a hypersphere: The surface of the hypersphere above is given by the
equation
4+ x)2=R. (6.19)

The “area” of this hypersurface is given by

g T 2w
S;(R) = R! / do; (sin 6,)472 ... / dby_» sin 6,_» / do, (6.20)
0 0 0

which simplifies to

27d/2 Rd-1

I (34)

Sa(R) = (6.21)
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Note the obvious relations

dV4(R)
dR

R
Vd(R)zf dr S4(r) and S;(R) = (6.22)
0

% 4. Carry out the simplification required to obtain Egs. (6.18) and (6.21).

Ind = 2 and 3, respectively, Eq. (6.21) reduces to 27 R and 47 R? for the circumfer-
ence of acircle of radius R and the surface area of a sphere of radius R. Settingd = 1
in Egs. (6.18) and (6.21), respectively, we get 2R (the length of a line extending to
a distance R on either side of the origin) and 2 (the “surface” of this line, namely,
the two end points)! Note also that the “surface-to-volume” ratio of a hypersphere
increases linearly with the dimensionality: we have

Sa(R) _d (6.23)
Via(R) R’ ’

e The hypersurface given by Eq.(6.19) is a smooth manifold whose topological
dimensionality is (d — 1). In mathematics it is called the (d — 1)-sphere, and is
denoted by §¢~1.

6.2 Scalar and Vector Fields and Their Derivatives

We shall denote scalar fields by symbols such as ¢(r), 1 (r), .. ., and vector fields by
symbols such as u(r), v(r), .. .. Unless otherwise specified, a, b, k, ... will denote
constant vectors, i.e., they do not depend on r.

6.2.1 The Gradient of a Scalar Field

When the del operator is applied to a scalar field ¢(r), it yields a vector field called
the gradient of the scalar field, written as grad ¢(r) or V¢(r). In geometrical terms,
the direction of grad ¢(r) is normal to the level surface ¢(r) = constant on which
the point r lies, and is along the direction of increasing ¢. See Fig. 6.3a. This implies
that

e the gradient of a scalar field at any point is along the direction in which the rate of
increase of the function is the highest.

Let e; denote the unit vector in an arbitrary direction at the point r, and £ the
coordinate along this direction, as in Fig. 6.3b. What is the change in ¢ for an infinites-
imal displacement d§ = (d§) e along this direction? On the one hand, it is given by
do = (0¢/0€) d€. On the other hand, it is also given by
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Fig. 6.3 a V¢ is normal to (a) (b)
the surface ¢ = constant b=constant

passing through the point r.

b The component of V ¢ Vé

along any direction e¢ gives
the rate of change of ¢ in that
direction

dp=V¢- -d§ = (e - Vo) d¢. (6.24)
Therefore we must have
% =e Vo (6.25)
ag = eg , .

for any arbitrary direction €. In other words:

e The rate of change of a scalar field along any direction is the component of the
gradient of the field along that direction.
e This is the reason why the gradient is also called the directional derivative.

In index notation, the gradient of a scalar field ¢ is of course represented by the
vector J; ¢.

Using the expression for the gradient operator in spherical polar coordinates, it is
clear that the gradient of any function ¢(r) of the radial coordinate alone is given by
Vo(r) = ¢'(r) e, where ¢ is the derivative of ¢ with respect to its argument. It is
also useful to note that, if ¢ is a constant vector, then

V(-ry=c¢ and Vg(c-r)=¢'(c-r)c. (6.26)
% 5. Using Eqgs. (6.7), find the gradient of each of the following scalar fields:
(a) o° cos 3p (b) r>cos@ (c)a-(bxr) (d(@axr)-(bxr)
A property of plane waves: The complex representation of a plane wave with wave

vector k is given by the function ’* . The gradient of this scalar function is frequently
required. It is straightforward to show that

VKT = ik kT, (6.27)

Having seen how the del operator produces a vector field from a scalar field, let
us see how it can produce a scalar field from a vector field.
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6.2.2 The Flux and Divergence of a Vector Field

On any smooth surface, even if it is curved, an infinitesimal element of area located
at any point r can be regarded as a planar area element. Hence a direction can
be associated with it, namely, the direction normal to its plane. We write the area
element as a vector S = ndS, where n is the unit normal to the element and 6.5
is the magnitude of the area of the element. Then the flux of the vector field u(r)
through the area element S is a scalar quantity that is defined as follows:

Flux of u(r) through 68 & w - S = (u - n) 85. (6.28)

This flux is a measure of the way the field lines of the vector field pass through the
area element. Its value changes from point to point because both u and n are functions
of r in general, for a given magnitude §S of the area element.

You will observe at once that there is an ambiguity in the definition of the normal
to an area element, because both n and —n can serve as normals. This is resolved by
the following convention. Let §C be the oriented simple closed curve that represents
the boundary of the area element. (That is, there is an arrow on the curve to tell us
the sense in which we must move along the curve.) Then, as §C is traversed, the
direction in which a right-handed screw moves forward is taken as the direction of
the normal n. See Fig. 6.4. For a closed surface, the convention is to take the outward
normal at each point as the direction of the normal. It is worth remembering that

e a finite area is not a vector; but a vector can be associated with an infinitesimal
area element.

It is a simple matter to see that
e the flux of a vector field is an additive quantity.

Given a surface S, we can break it up into infinitesimal area elements. The total flux
® of the vector field through S is then given by the sum of the fluxes through the
individual area elements:

Total flux of u through S, & = /u~dS = /(u-n)dS. (6.29)
S s

Fig. 6.4 The flux of the
vector field u through the n

area element 6S = ndS is R u
(u-n)oS ‘



82 6 Vector Calculus

Fig. 6.5 Flux of a vector n4
field through a closed surface u
S, with the field lines of a
vector field u entering and
leaving the surface

The flux of a vector field through a closed surface S is of particular interest (see
Fig.6.5). As the normal is always directed out of the surface for each surface element
in this case, field lines that leave the surface contribute positive amounts to the flux
(the angle between u and n is acute, so that its cosine is positive). On the other
hand, field lines that enter the surface contribute negative amounts to the flux (the
angle between u and n is now obtuse, so that its cosine is negative). The net flux is
a measure of the difference between the outward flux and the inward one.

Now consider an infinitesimal volume element §V at any point r, bounded by the
(closed) surface 6S. The flux per unit volume of the vector field u at the point r is
defined as the divergence of u at that point, and written as div u(r). Thus

o -dS
divum) < lim f‘”L.

§V—0 % (6.30)

The interesting fact is that the limit above is a local quantity, i.e., it is a function of r
alone, independent of the shape or orientation of the volume element. This property
enables us to calculate divu using any convenient shape for the volume element.
This calculation is a standard exercise, and I shall not repeat it here. The outcome is
a formula or algorithm for the computation of the divergence that reads, formally, as

divu(r) = V - u(r). \ 6.31)

You must understand clearly that Eq. (6.30) is the definition of the divergence of a
vector field, while the right-hand side of Eq.(6.31) is a formula or algorithm for
computing it.

Let the components of u(r) be given by (u, , u,, u;) in Cartesian coordinates,
(u,, uy, uz)incylindrical polars, and (u, , ug, u,) in spherical polars. Remember
that each component of the vector field is, in general, a function of all the coordinates.
Then, in explicit form,
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Ou ou Ou
Ty =

Ox Ay 0z

10(ouy) 10u, Ou,

= + + 6.32
o 0o 00p 0Oz (652)

V-u(r) =

1 9(r*u,) N 1 O(sin Quyp) 1 Ou,
rz  Or rsinf 90 rsinf Op

Once again, in index notation, we have the compact expression

\divuzv.uzaiu,-.\ (6.33)

It follows trivially that the divergence of the vector field u(r) = r itself is

[divr =0, x; =3.| (6.34)

This is just the number of dimensions of space.

% 6. Find the divergence of each of the following vector fields:
(@ax(bxr) (b)(@axr)x((dxr) (c)po)e, (d) o(r)e:

Another property of plane waves: A plane wave vector field (e.g., an electric or
magnetic field) with a constant amplitude a and wave vector k is represented by
the function a e’*™. The divergence of this vector field is of physical interest. It is a
simple exercise to show that

V- (ae'®™) = (ik - a) &'*T. (6.35)

Note that e, is not uniquely defined on the z-axis (¢ = 0), and that e, is not uniquely
defined at the origin » = 0. In general, axially symmetric fields are singular on the
axis of symmetry, and central fields are singular at the origin. It is easy to see that

e a central field whose magnitude is proportional to " has a vanishing divergence
forall r > Oif and only if n = —2, so that u, 1/r2, i.e., if it is an inverse square
field.

A vector field whose divergence vanishes identically is said to be solenoidal.

6.2.3 The Circulation and Curl of a Vector Field

The del operator can also produce another vector field from a given vector field. For
this purpose, we need the concept of the circulation of a vector field.
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Fig. 6.6 The circulation of

u over the infinitesimal

closed contour §C bounding u
the area element ¢S is the

line integral of u over 6C. In

the case illustrated, the

normal n to the area element 8C

is directed out of the plane of

the paper

The line integral of a vector field u(r) from a point P with position vector r;
to another point Q with position vector r, along a directed contour C is defined as
/. ¢ u(r) - d&. In general, the value of the integral depends on the particular path taken
from P to Q. If the contour is an oriented closed contour C, starting and ending at
the same point, then the line integral is called the circulation of the vector field over
the contour C:

Circulation of u over C < f u(r) - di, (6.36)
c

where the symbol 55 denotes an integral over a closed path or contour.

In order to obtain a local quantity at any point r, consider an infinitesimal area
element 0S = néS centered at r. Let §C be the oriented closed contour that is the
boundary of the area element (see Fig. 6.6). Then the circulation per unit area of the
vector field u at r yields the magnitude of a certain vector field associated with u.
This field is called the curl of u, and is written as curl u. Its direction is given by n.
Thus

(6.37)

def. .
curlu = lim
65—0

Fscu(r) - de n)
0S ’

Note that the sense or direction in which the contour C is traversed is related to the
direction of n by the right-hand screw rule.

Once again, it is a remarkable fact that the limit in Eq. (6.37) is actually indepen-
dent of the shape and orientation of the area element §S. This property permits us to
use any conveniently shaped and oriented contour to evaluate the integral and pass
to the limit concerned. The result is a formula or algorithm for the curl of a vector
field that reduces, formally, to

‘curlu(r) =V x u(r). ‘ (6.38)

As in the case of the divergence, you must appreciate the fact that Eq.(6.37) is the
definition of the curl of u, while Eq. (6.38) is a formula that enables us to calculate this
quantity. In the Cartesian, cylindrical polar and spherical polar coordinate systems,
respectively, we have
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Ouz;  Ouy Ouy  Oug Ouy  Ouy
\Y% =|— — _— = — _—
x u() ( dy 0z ) e+ ( 0z ox )@ + Ox Ay €
10 Ou, 0 0 1/0 0
:<,ﬁ_ﬂ) w( g _£> ew,( (ouy) _ﬂ> .
0 Oy 0z 0z 0o 0 do Op

1 (0(sin Ouy) 6149) o 4
= — 5 )¢

r sin 6 00 dp
L(_ 1 Ou 0Cuy) 1 (O(rug)  Our
+ r (Sin 0 % or ) e + r ( or 90 €p. (6.39)

The curl of a vector is very conveniently represented in index notation:

’V:curlu=qu = v,-:e,-jkﬁjuk.‘ (6.40)

The curl of the vector field u(r) = r itself vanishes identically:
(curlr) =6,'jkajxk = €ijk 5jk =0. (641)

i

A vector field whose curl vanishes is said to be irrotational or curl-free.
Here is a simple result that is quite useful in applications. If b is a constant vector,
then

curl $(b x r) = b. (6.42)

It is a simple exercise to establish this formula using the index notation (see the exer-
cise below). In magnetostatics (to be discussed in Chap. 9, Sect. 9.1.6), the expression

A=3Bxr) (6.43)

is often used for the vector potential corresponding to a constant magnetic field B.
It leads at once to the relation curl A = B. Another instance arises in the rotational
dynamics of rigid bodies. The linear and angular velocities of a mass element on the
body are related in this case by

V=wxr = 2w=curlv. (6.44)

Such a relation also occurs in fluid dynamics, as we shall see in Chap. 7, Sect.7.3.1.
% 7. Use the index notation in the exercises that follow.

(a) Establish Eq.(6.42).

(b) Find the curl of each of the following vector fields:

() (@axr) x (bxr) (ii) p(o)e, (i) ¢(r)e;.
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Yet another property of plane waves: The curl of the vector field representing a
plane wave is also of physical interest. It is easily shown that

V x (ae'®T) = (ik x a) e/*7. (6.45)

Equation (6.27) shows that the action of the operator V on the function ¢’¥ is simply

to replace V by ik. Further, Egs. (6.35) and (6.45) show that this remains true for
operations V- and V x as well. These properties are of fundamental importance in the
Fourier expansion of vector fields. They are very useful, for instance, in the analysis
of Maxwell’s field equations for electromagnetic fields, as you will see in Chap. 9.

6.2.4 Some Physical Aspects of the Curl of a Vector Field

The flow of fluids provides a number of insights into the behaviour of vector fields.
We will discuss fluid dynamics in greater detail in Chap. 7, but it is helpful to make a
couple of points here. These should help dispel some misconceptions regarding the
notion of the curl of a vector field.

(a) Consider the velocity field on the surface of the water flowing in straight stream-
lines in a long straight canal with its banks parallel to the x-axis, given by the lines
y = —a and y = a, respectively. The central axis of the canal is along the x-axis.
See Fig.6.7. The velocity of the water at any point (x, y) has only an x-component,
and is of the form

v(x,y) =v(y) e, (6.46)

Here, v, (y) is a symmetric function of y that is maximum at y = 0 (the center of the
canal) and drops to zero at y = %a. (In the simplest case,

Fig. 6.7 Streamlines in fluid Ay
flow on the surface of a
straight canal. The length of

each arrow is meant to » » » > 4> — — —»
indicate the magnitude of the

fluid velocity at that point. > > > > >
ABCD represents a small
raft on the water. It
undergoes a rotation about O . .
its center (clockwise, " " Ar B "
looking down from above) as > > > I

. D
it floats down the canal > — — L _? .

v
v
v
v

24
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Fig. 6.8 Streamlines of fluid
flow around a vortex on the
z-axis (which is directed
normal to the plane of the

paper)

(<
N

v () o (@* — y?). (6.47)

This is called Poiseuille flow, and is a consequence of the viscosity of the liquid.)
Since the only nonzero component of the velocity is vy, the curl of the velocity field
is given by

curlv(r, y) = — 2% e 20, (6.48)
dy

Thus, the velocity field is not irrotational, even though the field lines of v are straight
lines parallel to the x-axis.

e Field lines that are parallel straight lines do not necessarily imply an irrotational
vector field!

(b) On the other hand, consider the velocity field
v=KVyp (6.49)

where K is a constant and  denotes the azimuthal angle in cylindrical polar coordi-
nates, as usual. This is a simple model of the velocity field around a vortex located on
the z-axis, as shown in Fig. 6.8. The field lines are concentric circles centered about
the z-axis. The vector field is singular ar the vortex itself, i.e., on the z-axis. Using
the formula for the gradient operator in cylindrical polar coordinates (the second
equation in (6.7)), we get

v=KVp=(K/oe,. (6.50)

(The singularity of the field at ¢ = 0, i.e., on the z-axis, is now manifest.) Thus v
has only an azimuthal component, v, = K/p. Using the second formula in (6.39),
we see that curl v vanishes identically in this case.

e Curved field lines do not necessarily imply a vector field with a nonvanishing curl!
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An infinitesimal fluid element may be regarded as a “rigid” body to a first approxi-
mation. The relation 2w = curl v (the second equation in (6.44)) then implies that the
curl of the velocity field of a fluid at any point is equal to twice the local angular veloc-
ity of a fluid element about its center. I will return to this point in Chap. 7, Sect. 7.3.1,
when discussing vorticity. In example (a) above, a small raft floating down the canal
(see Fig.6.7) will rotate about the raft’s center as it drifts downstream, because the
side AB of the raft nearer the central axis of the canal will tend to move faster than
the side CD that is nearer the bank. The curl of the velocity field, being directly
proportional to the transverse velocity gradient Jv, /0y, is a measure of the angular
velocity of this rotation. It is also easily seen that a small raft drifting around the
vortex in example (b) actually undergoes no such “intrinsic” rotation about its own
center—although it is rotated by exactly 27 as it completes every full revolution
around the vortex, i.e., around the singularity of the vector field concerned. This is
consistent with the vanishing of curl v everywhere (except on the singularity) in this
case. Incidentally, this simple example illustrates a crucial point in vector calculus
(and, ultimately, in differential geometry). I will return to it in Chap. 8, Sects.8.1.3
and 8.3.

6.2.5 Any Vector Field is the Sum of a Curl and a Gradient

Vector fields satisfy two very basic and useful identities.

(i) The divergence of the curl of a vector field vanishes identically.

This identity is trivially established using the index notation. All that is needed is the
fact that the contraction of an antisymmetric tensor with a symmetric one vanishes
identically. If u(r) is a vector field, then

diveurlu(r) =V - (Vxu) = ¢4 0; 0jur =0, (6.51)

because ¢;j; is antisymmetric under the interchange of the indices i and j, while
0; 0; is symmetric.

(ii) The curl of the gradient of a scalar field vanishes identically.

If ¢(r) is a scalar field, the ith component of the curl of grad ¢ is given by

[curl grad ¢(r)]; = (V x V@); = €x 0; O =0, (6.52)

again because ¢;j is antisymmetric in the indices j and k, while 9; 0y is symmetric
in these indices.

These are extremely useful identities. The first of them implies that every
solenoidal vector field v(r) can be always be written as the curl of some other vector
field, say s(r). That is,

|[divv=0 = v=culs. (6.53)
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The second identity implies that every irrotational vector field w(r) can always be
written as the gradient of a scalar field, say v (r). That is,

curlw =0 = w=grad. ‘ (6.54)

You might wonder whether there are any more identities of this kind. The answer is
“no”. I mention here that the most natural way of understanding this assertion is in
the language of differential geometry, although the latter subject is beyond the scope
of this book.

Conservative vector field: Any vector field that is the gradient of a scalar field enjoys
another useful property: its line integral from any point P with position vector r; to
another point Q with position vector r; is independent of the actual path taken from
P to Q. We have in this case

/rzw-dl =/rsz~d€=w(r2)—¢(rl). (6.55)

It follows that

e the line integral of a gradient field around any closed path C vanishes:

?gw-cM:?gVQﬁdl:O. (6.56)
c c

Such a vector field is also called a conservative vector field. Foremost among phys-
ical examples is a force field “derived” from a scalar potential V (r) according to the
familiar relation

[F(r) = —VV(). (6.57)

Helmholtz’s Theorem is of fundamental importance. It asserts that every vector field
u(r) can be written as the sum of a solenoidal vector field v and an irrotational vector
field w:

u(r) =v(r) + w(r) where divv=0 and curlw =0. (6.58)

Hence any vector field u(r) can be represented in the form

u(r) = curls(r) + grad ¢(r). \ (6.59)

Now, three “pieces of information™ are required to specify the original vector field
u(r), namely, its three components. It might appear that this number has increased
to four when we write u(r) as in Eq.(6.59): the three components of s, as well as
the scalar function . But this is not so. Remember that the divergence of curls is
identically zero. This implies a relationship between the three components of curl s.
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Hence there are, in effect, just two independent pieces of information encoded in this
term. Together with the scalar v, that makes a total of three, the same as the original
number required to specify u.

6.2.6 The Laplacian Operator

The operator V - V formed by taking the scalar product of the del operator with
itself is called the Laplacian, and is written! as V2. It is important to note that V2
is a scalar differential operator, in contrast to V, which is a vector operator. From
the mathematical point of view, the Laplacian and its generalizations are of deep
and profound importance. In Chap. 8, Sect.8.2.3, I will describe in brief why this
is so. In physics, too, the Laplacian appears everywhere, in an enormous variety
of contexts. It is present in almost all of the fundamental equations of mathematical
physics, such as Laplace’s equation, Poisson’s equation, the Helmholtz equation, the
diffusion equation, the wave equation, the Schrodinger equation, the Navier—Stokes
equation, etc. We will encounter these equations in Chaps. 7, 9, and 29-32.

When it acts on a scalar field, the Laplacian is the same as the divergence of the
gradient of the field. That is,

V2p=(V-V)p=V-(Ve) =div grad ¢. (6.60)

In index notation, we have

V2 =00 ¢. (6.61)

In general orthogonal coordinates (£;, &, &3), the Laplacian of a scalar field ¢ is

given by
V2= 1 { 0 (h2h3 %)_i_i(mhl %)

hihyhy |96\ k1 0% 06 \ hy 0&%
0 (hihy 0¢ ) }
— —_— , 6.62
+3§3 < hy  0& (662)

where (hy, h,, h3) are the scale factors introduced in Egs.(6.8) and (6.9). The
respective explicit expressions in Cartesian, cylindrical polar, and spherical polar
coordinates, and in the three-dimensional parabolic coordinates (&, 17, ) defined in
Sect.6.1.2, are as follows:

ITexts on mathematics often use the notation —A for the Laplacian, or a generalization of the
Laplacian to curved spaces. I shall stick to V2, in order to avoid possible confusion.
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o*¢  9¢ @

ox2 ' 9yr | 0z2

19 ( @) L1820 0%
0 0o Q(’?g 0* 0p? 072
V3 = (6.63)

10 (,00¢ 1 0 (. ,0¢ 1 9%
725(’ E>+r2 sin 9%(5111 9% +r2 sin? 6 g?

1 1 0 (. 0¢ 1 0 0¢ 1 %9
e e ) T \a ) (Tazans
&+ L§og\"05)  non\ 0oy &7 Oy
% 8. Find the scalar fields that result by applying the Laplacian operator to the
following scalar fields:

(@) 0 cos 3¢ (b)rlcosf (c)a-(bxr) (d)@xr)-(bxr)

V? acting on a plane wave: You have already seen that, when the del operator acts
on a plane wave ¢'¥T, V is essentially replaced by ik (Eqs. (6.27), (6.35), and (6.45)).
It follows at once from the first two of these equations that

V2 okt — 2 pikr (6.64)

Again, this a very useful result.

The Laplacian operator may also act on a vector field, and on higher rank tensor
fields. In particular, the quantity V2 u is defined as the vector field with Cartesian
components V2u; or, in index notation, 9; d; u;. When working in curvilinear coor-
dinates, you must remember that the unit vectors themselves are functions of the
coordinates. We have, for instance,

VZe, = —2e,/r’, or V*(r/r)=—2r/r’. (6.65)

* 9. Verify Eq. (6.65).

% 10. Find the vector fields that result by applying the Laplacian operator to the
following vector fields. a and b are constant vectors, while ¢(p) and ¢ (r) are arbitrary
twice-differentiable functions of their arguments.

(@ 3 xr) (b) (axr)x(bxr) ()ac*" (d) p)e, () p(r)e.

Remember that the unit vectors e, and e, are functions of the coordinates.
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6.2.7 Why Do div, curl, and del-Squared Occur so
Frequently?

You would have noticed that physical laws involving scalar and vector fields almost
always involve the divergence, curl, and Laplacian of these fields. Why should this
be so?

In Chap. 5, Sect.5.1, I have explained why the invariance of physical laws under
rotations of the coordinate axes requires that they be expressed in terms of quantities
such as scalars, vectors, and tensors. These quantities have definite transformation
laws under such rotations.

Physical laws generally involve differential equations. The broad reason is that
the underlying “mechanisms” are local in space and time. The viewpoint that has
emerged over the past 350 years or so, in our progression from nonrelativistic New-
tonian mechanics to relativistic quantum field theory, is as follows:

e There is no “action at a distance”. Events at a given space—time point are affected
by what goes on in the immediate neighborhood of that point.

e This is implemented mathematically via differential operators, leading to the
expression of physical laws in the form of differential equations.

e The form-invariance of such equations then requires that the differential operators
be such that, when they act on the fields, the resulting quantities also have definite
transformation properties.

The Laplacian V? is a scalar operator. Acting on a scalar field, it produces a
scalar field. Acting on a vector field, it produces a vector field. I have already men-
tioned its importance and ubiquity (see also Chap. 8, Sect. 8.2.3). Equations such as
Poisson’s equation for the electrostatic potential, V>¢ = —p/¢, are guaranteed to
be rotationally invariant. Roughly speaking, the appearance of V2 in an equation
of mathematical physics is a reflection of the rotational invariance of the physical
situation described by that equation.

The reason for the natural appearance of the divergence and curl of vector fields
is a little more involved. Let u(r) be some physical vector field in three-dimensional
space. There are nine possible first derivatives, comprising (the components of) the
tensor O; u;. In Chap.5, Sect.5.3.1, we have seen that Cartesian tensors of rank
£ > 2 carry within them more than one irreducible part, i.e., that they are made up of
several spherical tensors. In particular, a Cartesian tensor of rank 2 has a scalar part
(the sum of its diagonal elements) and a vector part (comprising the 3 components of
its antisymmetric part). In the case of the tensor 0; u ;, the trace is just the divergence
of u, which is a scalar:

Ou, % du,

divu=0;u; =0 1o, Oz uz =
vu U, U+ oruy + dzus o Dy B

(6.66)

Moreover, the antisymmetric part of the tensor is %(3,- uj — 0; u;). This is just half
the curl of u, which is a vector:
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curlu = (82143 —83142, 83141 —8] us, 61 un —(9214])

_<8uZ Ouy, Ouy Ou, Ou, 8ux>

dy 0z 0z ox  ox dy

6.67)

The divergence and curl of u are spherical tensors of rank 0 and 1, respectively. They
have simple and definite transformation properties under rotations of the coordinate
axes. It is therefore very appropriate, and not surprising, that these quantities appear
in physical applications.

But there is more to it. It turns out that the divergence and curl of a vector field
actually suffice to specify the vector field completely, in a manner that is independent
of the choice of any particular frame of reference:

e If the divergence and curl of a vector field are specified at all points of a (three-
dimensional) region, and the normal component of the curl is specified at all points
on the boundary of the region, the vector field is essentially determined.

The way this works will become clear after we discuss Fourier transforms in Chap. 18.
I shall, however, describe the general idea here. Any (integrable) function u(r) of
the coordinates can be written as a superposition (or sum) of exponential functions
¢'**, summed over all possible values of the constant vector k. Since the components
of the vector k are continuous, the superposition is an integral rather than a sum. It
reads

u(r) =

G f A’k u(Kk) ™", (6.68)

(As you will see in Chap. 18, Eq.(6.68) is the representation of u(r) as a Fourier
integral.) Since u is a vector, the coefficient (k) of each ¢’*T is also a vector. It is
labelled by k (and is independent of r, of course). Now, settinga = t(k) in Egs. (6.35)
and (6.45), we have

VvV - (W(k ikr) _ ik -k ik~r’
(k) e*T) = (ik - U(k)) e } 669

V x (U(k) e*T) = (ik x u(k)) e’*".

Therefore:

e For any given k, the divergence of the vector field gives the component of the
vector field in the direction of K, i.e., its longitudinal component.

e The curl of the vector field gives its component in the plane normal to k, i.e., its
transverse component.

e This is true for every k. Moreover, these statements are independent of any par-
ticular choice of the coordinate axes.

e Hence, a knowledge of the divergence and curl of a vector field amounts to a
complete specification of the field in a manner that is independent of the choice
of the coordinate axes.
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That is why the fundamental laws of physics (e.g., Maxwell’s equations of electro-
magnetism) involve the derivatives of vector fields in combinations that correspond
to the divergence and curl of these fields.

6.2.8 The Standard Identities of Vector Calculus

I conclude the first part of our discussion of vector calculus with a list of standard
identities. They are very conveniently established with the help of the index notation.

% 11. Using the index notation, show that

(@ V(p+¢)=Vo+Vy

(®) V(oY) = (Vi) + (Vo) ¢

© V- -(pu)y=9¢((V-u)+(Vg)-u

(d) Vx(pu) =¢(Vxu)+(Vg) xu

e V-mxv)=v-(Vxu)—u-(Vxv)

O Vx@uxv)y=u(V.-v)—=v(V-u)+(v-Viu—(u-V)v
@ V- v)y=u-V)v+(v-Viu+ux (Vxv)+vx((Vxu
(h) V2 (@) =V + 9 Vip+2(Ve- Vi)

(i) Vx(Vxu) =V(V-u-Vu

() vx(Vxv)=V(GEr)—(v-V)v

The symbol (u - V) in the above denotes the scalar differential operator

P 8+ 8+ 0
U 0 = Uy — Uy — U, —.
Ox Y Oy t 0z

It is the directional derivative along the direction of the vector u. Among other
applications, the identity in (j) is used frequently in fluid dynamics, as you will see
in Chap.7.

In Chap. 8, we shall resume our discussion of vector calculus, and consider the
various integral theorems satisfied by vector fields.

6.3 Solutions

1. You can work this out geometrically, but there is also a straightforward way of
doing so with a bit of algebra. Expand each of the unit vectors in cylindrical and
spherical polar coordinates in terms of e,, e,, and e,. Now exploit the fact that the
latter are constant in both magnitude and direction.

(a) e, and e, have the following expansions in terms of the unit vectors in Cartesian
coordinates:
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e, =€, cos ¢+ e, sin o,

€, = —e, sin p + €, cos .
It follows that
Oe, Oe Oe, e, Oe, Oe,
0 :O’ —Q=e¢’ = :0’ —wzo’ ¥ =_e0’ —\pzo
dp Do 0z 0o Oy ° 0z

(b) Similarly, (e,, ey, e,) have the following expansions in terms of (e,, ,, €;):

e, = e, sin 0 cos ¢ + e, sin 0 sin ¢ 4 e, cos 0,
ey = e, cos 0 cos ¢ +e, cos 0 sin ¢ —e; sin 6,

e, = —e, sin ¢ + e, cos ¥.

It then follows that the nine partial derivatives sought are

oe, 0 Oe, . Oe, e sin 6
= = — =e, sin
or 00 " 9p
Dey Oey Oey
E:O, a9 = ¢ %zeg@cose
e, 0 de,
%:0, %:O, %;:—e,sinﬁ—egcos&
(c) Since e, = —de, /0y, it follows that e, = e, sin 0 + ey cos 6. >

5. (a) 30°(e, cos 3p — e, sin 3p). (b)2e,r cos § —egr sin 6.

(c) Writing ¢ as (a x b) - r, it follows that V¢ = (a x b).

(d) Rewrite the function as (a - b) 7> — (a - r)(b - r). The chain rule of differentiation
applies to the gradient operator as well! The final result can be written as

V[@xr)-xr)]=ax@xb)+(@xr)xb.

Since the function given is symmetric under the interchange of the vectors a and b,
its gradient must also have this symmetry. Check this out. >

2
6. (a) —2(a-b) (b)4r-(axb) (c)%—i—(ﬁ’(g) (d) @Jﬂﬁ’(m

Remark The fields in (c) and (d) are, respectively, axially symmetric and and spher-
ically symmetric fields. The latter is also called a central field. >

7. (a) The ith component of the vector curl %(b X T)is

1 1 1
3 €ijk Of €im b1 Xm = 5 €ijk €kim b1 Ojm = 5 €jki €jxa by = i1 by = b; .
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Hence the vector curl %(b xr)=Db.
Mb)@ (axb)yxr ()0 (1i)0O

Remark The field in (ii) is axially symmetric, i.e., it has cylindrical symmetry. The
field in (iii) is spherically symmetric (it is a central field). Observe that both these
fields are irrotational. >

8. (@0 (b)4cosf ()0 (d)4(a-b) >

9. Writee, =r/r = (sin 0 cos y) e, + (sin ¢ sin ¢) e, + (cos ) e,. Note that the
Cartesian unit vectors are independent of the coordinates. Use the formula in (6.63)
for V2¢ in spherical polar coordinates. >

10. ()0 (b)2(axb) (c) —ak?ekr

@ [qﬁ"(m A d’(—f)} e,
0 Y

2¢’ 2
(e) [¢”(r) + —¢r(r) - Qi(zr)] e

Remark The results in cases (d) and (e) are the expressions obtained by the action
of the Laplacian on an axially symmetric vector field and a spherically symmetric
vector field, respectively. >



Chapter 7 ®)
A Bit of Fluid Dynamics s

Fluid dynamics provides a beautiful physical illustration of numerous aspects of
vector calculus. This chapter is devoted to a quick recapitulation of some of these
aspects.

7.1 Equation of Motion of a Fluid Element

There are two broad approaches to fluid dynamics. In the first, attention is focused
on a particular particle of the fluid, and its motion is tracked as a function of time.
This must be done consistently for all the particles of the fluid. This is called the
Lagrangian approach. In the second, called the Eulerian approach, we focus our
attention on a particular point in the region occupied by the fluid, and keep track
of the velocity of the fluid and its density at that point as a function of time. This
must be done consistently for all the points of the region occupied by the fluid. Of
course, different particles of the fluid arrive at any given point and depart from it as
time elapses, but this does not matter. Each of the two approaches has its advantages
and disadvantages, but they are, ultimately, equivalent to each other. I will use the
Eulerian approach here, as it is simpler to describe quantitatively.

7.1.1 Hydrodynamic Variables

The Eulerian description is based on a set of local hydrodynamic variables. The
basic ones among these (the ones that are relevant in the simplest situations) are the
pressure P(r, t), the velocity v(r, ), and the density p(r, ¢). Here r is the position
vector of a general point in the region in which the fluid is flowing, and not the
position vector of any particular physical particle of the fluid. The state of the entire
© Authors 2020 97
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fluid at any instant of time is described by a pair of fields, namely, the scalar field
p(r, t) and the vector field v(r, ¢). The basic problem is the following:

— Given the pressure field P (r, t) and the externally applied forces (if any), find the
fields v(r, t) and p(r, 1).

We shall be concerned only with streamlined flow. Recall that

e astreamline is a field line of the velocity field v. That is, the velocity vector v(r, ¢)
is tangential to the streamline passing through the point r at time ¢.

When the velocity field v(r, ¢) is well-defined almost everywhere, and is sufficiently
smooth, we have streamlined flow—as opposed to turbulent flow. When turbulence
occurs, the variation of the velocity field in space and time has a degree of randomness
or stochasticity. In spite of a great deal of progress over the past 300 years or so, the
precise nature of this chaotic behavior is not fully understood, and the problem of
fluid turbulence is far from fully solved.

It is important not to confuse streamlined flow with steady flow. In general, the
streamlined flow may be unsteady—the streamline pattern of the fluid may change
with time. If the flow is steady, this time dependence disappears, and we have a fixed
streamline pattern throughout the fluid. The equation of continuity, connecting the
density and velocity fields, expresses the conservation of matter. In a region without
sources or sinks, we must have

dp

o 4+ V -j=0, where the fluid current density j=pv. (7.1)

For an incompressible, homogeneous fluid, p(r, t) is equal to a constant both in space
and in time. Therefore the equation of continuity reduces to

V .v =0 (incompressible fluid). (7.2)

Hence the velocity field of an incompressible fluid is solenoidal (in a region free of
sources and sinks). This fact leads to considerable simplification. In practical terms,
it represents one of the main differences between the flow of a gas and that of a liquid.

7.1.2 Equation of Motion

In order to obtain the equation of motion of the fluid, we apply Newton’s second law
to an infinitesimal volume element § V of the fluid that is located at the point r at
time ¢. The mass of this element is p 0V, and its acceleration is dv/dt. (Remember
that p = p(r, t) in general.) The fluid flows under the action of three types of forces:
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(i) Any external or applied force; let F.y denote this force, per unit volume of the
fluid.

(ii) Theforce arising from any “pressure head” (i.e., pressure difference) in the fluid;
this is given by —V P per unit volume of the fluid, where P is the pressure at
the point concerned.

(iii) In addition to these forces there is always a dissipative force, due to viscosity
or internal friction, whenever the fluid moves; let Fy;s. be the viscous drag force
per unit volume of the liquid.

Then, canceling out the factor § V on both sides of Newton’s equation, we have

P d_v =Fext — VP + Fyigc . (73)
dt
If the external force is a conservative one, it can be related to the gradient of a potential:
we have Fey (r) = —p V@, where @ is a scalar potential. (The most common example
is, of course, the force of gravity. Taking the z-direction to be the vertical one, we
have ® = gz in this case.) The equation of motion is then

d vp F,,
ARSI 2 L (1.4)
dt p p

It is important to note that Fy;. cannot be written as a gradient of some scalar
potential. In Sect.7.4.1, you will see that it can be expressed in terms of the velocity
field itself, in the framework of a simple model of the stresses in the fluid.

The acceleration dv/dt on the left-hand side of Eq. (7.4) is the fotal time derivative
of the velocity v(r, #). This total time rate of change has two contributions. First, v
can have an explicit dependence on ¢: at a given fixed location in space, v may vary
with time if the flow is not steady. Second, v has an implicit dependence on ¢ through
its dependence on r. This arises because the particular fluid element that happens to
be at r at time ¢ has an instantaneous velocity dr/dt. Hence

dv(r,1) ov Ovdx 0Ovdy 0vdz _ ov LYY 75)
dt Ot Oxdt 0Oydt Ozdt Ot ' '

Here the symbol (v - V) stands for the scalar operator that is given in Cartesian
coordinates by

0 0 0
-V =v, — o = . 7.6
v v8x+vy8y+v'8z (7.6)

Thus, in a moving medium, the total time derivative of any function of r and ¢ is
made up of two parts, according to the formula

d_90 vy (1.7)
a o '
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The second term on the right-hand side is a direct effect of the motion of the fluid,
and is called the convective derivative.

Returning to the equation of motion, (7.4) may now be written as

ov VP Fvisc
— 4+ vV-V)V=——-—-Vo 4+ —. (7.8)
ot p p

Next, recall the last of the identities listed at the end of Chap. 6, Sect. 6.2.8, namely,
v-V)v=V(4v?) —v x (V x V). (7.9)

Substituting this in the equation of motion, we finally obtain

Fvisc

(7.10)

0 VP
8—:—VX(VXV):—7—V(¢'+%U2)+

This is the general form of the equation of motion of a fluid. Together with the
equation of continuity

dp
~Z4v. - 7.11
ar (pv) =0, (7.11)

we thus have, in principle, a sufficient number of equations to solve for the fields
v(r, t) and p(r, t)—provided the other quantities such as ®, P and F,; are specified,
and appropriate initial and boundary conditions are given.

Itis very important to note the presence of the quadratic nonlinearity in the velocity
in the equation of motion (7.10). This nonlinearity is the primary reason why fluid
motion, in general, exhibits such incredibly complex kinds of dynamical behavior—
including, in particular, the phenomenon of turbulence.

7.2 Flow When Viscosity Is Neglected

7.2.1 Euler’s Equation

In many physical situations, it is reasonable to assume that the viscous drag Fig is
negligible. We then have a “dry” or inviscid fluid. Clearly, this assumption cannot
be rigorously true in general. But it is a good approximation that leads to a simplified
theory for the understanding of phenomena in fluid dynamics in which viscosity
plays no direct role. For example, if a cylindrical solid is rotated about its axis in a
fluid, it sets up a circular motion of the fluid about the axis because the fluid has a
viscosity and “sticks” to the surface of the solid. Having set up a circulation, we may
be justified, in some situations, in considering the motion of the fluid over short time
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scales under the assumption that the viscosity is negligible. I shall assume henceforth
that the viscous drag is negligible, and return to the case of a viscous fluid in Sect. 7.4.
For an inviscid fluid, the equation of motion reduces to

g—vx(va)z—V—P—V(Cb+%v2). (7.12)
P

This is called Euler’s equation.

7.2.2 Barotropic Flow

Even in the absence of F,, the right-hand side in the equation of motion (7.12) is
not a pure gradient term. In general, the quantity (V P)/p is not the gradient of a
scalar function. However, there are two cases in which it is indeed a gradient. The
first of these is a special case of the second.

(1) If the fluid is incompressible (and homogeneous), then of course p = constant. It
then follows trivially that (VP)/p = V(P/p).

(i1) In the case of gases, we do not expect p = constant to be a good approximation.
Gases are quite compressible, and we must certainly take the variation of p into
account.! In general, the equation of state of a fluid gives its pressure as a function of
its density and temperature. At any fixed temperature, therefore, P is a function of
p. In principle, this relationship may then be inverted to express p as a function of P
alone. In such cases it is possible to write (V P)/p as a gradient of a scalar function,
as follows. Since p = p(P), the indefinite integral

dpP
/— = some function f(P), say. (7.13)
p(P)

Now, for any function f(P), we have

Vf(P)= % VP. (7.14)
But, by the very definition of f(P),
afp)y 1 (7.15)
dP p(P)’ '

!Surprisingly, however, it turns out that in many problems in gas dynamics, the assumption of
incompressibility does not lead to much error, as long as the speed of the gas is less than about a
third of the speed of sound in the gas.
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Hence
Ezv]f(P):v(/d—P) (7.16)
p(P) p(P))’ '

A flow in which p = p(P) is called a barotropic flow. It is immediately obvious
that incompressible flow is a simple special case of a barotropic flow.

Here onward, we shall consider the barotropic flow of an inviscid liquid, unless
otherwise specified. Euler’s equation for such a flow reads

@—VX(VXV)——V d—P—i—CID—i—v—2 (barotropic flow) (7.17)
o1 - o(P) 2 ple ToW)-1 A

This equation will be our starting point in what follows. Note that the right-hand side
in Euler’s equation has finally been reduced to a pure gradient term. This fact has
significant implications, as you will see shortly.

% 1. Write down Euler’s equation in the case when P = K p" where K and n are
positive constants.
7.2.3 Bernoulli’s Principle in Steady Flow

In steady flow, the velocity field v has no explicit time dependence, i.e., v = v(r),
so that 9v/0t = 0. Equation (7.17) then reduces to

@xn=v( [ 1o l) 7.18)
vV X X V) = — — ). .
p(P) 2
Equation (7.18) leads at once to a very useful result: namely,
dP v? .
—— + & + — = a constant along each streamline. (7.19)
p(P) 2

This is the famous relation known as Bernoulli’s Principle. You must note that the
value of the constant can be (and in general, is) different along different streamlines.

If the flow is steady as well as irrotational, then

f L Lo+ % — aconstant throughout the fluid. (7.20)
p(P) 2
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In other words, the constant is the same for all streamlines in this case.

% 2. Establish (a) Eq. (7.19) for steady flow, and (b) Eq. (7.20) for steady irrotational
flow.

7.2.4 Irrotational Flow and the Velocity Potential

The equations governing the velocity field become particularly simple in the special
case of the steady, irrotational flow of an inviscid, incompressible fluid. The continu-
ity equation reduces to the statement that the divergence of v is zero (recall Eq. (7.2));
and “irrotational” means that its curl is zero. In this very special case, therefore. we
have

V-v=0,
v 0 } (steady, irrotational, inviscid, incompressible flow). (7.21)
X V=

Since v(r) is now an irrotational vector field, it can be written as the gradient of
a scalar field, v(r) = V ¢(r). It is natural to call the scalar field ¢(r) the velocity
potential. It follows from V - v = 0 that ¢ satisfies the equation

This is, of course, Laplace’s equation, which appears in many other contexts as
well. The solutions of Laplace’s equation are called harmonic functions. More will
be said about this equation and its solutions in Chap. 8, Sect. 8.2 (see also Chap.22,
Sect.22.3.2).

Two-dimensional flow: The velocity potential is particularly useful in the case of
two-dimensional flow (in the xy-plane, say). Since v = V ¢, the streamlines are
normal to the family of curves ¢(x, y) = constant, i.e., to the equipotentials.

e Streamlines and equipotentials thus constitute two mutually orthogonal families
of curves.

Just as the equipotentials are given by ¢(x, y) = constant, the streamlines are given
by an equation of the form v (x, y) = constant. The function ¢ (x, y) is called the
stream function. Clearly, V ¢ - V¢ = 0, as illustrated in Fig.7.1. It turns out that
the stream function also satisfies Laplace’s equation, i.e., it is also a solution of

V2 ih(x,y) = 0. (7.23)
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Fig. 7.1 Orthogonal
families of equipotentials

and streamlines in
two-dimensional flow

=constant

N3

T b=constant

/

% 3. Consider the steady, streamlined flow of an incompressible, inviscid fluid in
the xy-plane.

(a) If the streamlines are given by the family of curves x> — y?> = constant, find the
velocity potential ¢(x, y). Schematically sketch the families of streamlines and
equipotentials.

(b) If the velocity potential is given by x> + y?, find the equation to the family of
streamlines. Schematically sketch the families of streamlines and equipotentials.

The relationship between equipotentials and stream functions is actually even
closer. It turns out that they constitute the real and imaginary parts of an analytic
function of the complex variable z = x + iy. We will discuss analytic functions in
some detail Chap.22 and in subsequent chapters. I merely mention here that ¢ and
1 satisfy the Cauchy—Riemann conditions that make ¢ + i1 an analytic function
of z. These conditions are

0 _ov 06 _ov. 020
Ox Jdy Oy ox
Observe that Egs. (7.24) imply that both ¢ and 1 satisfy Laplace’s equation, i.e., both
of them are harmonic functions.

7.3 Vorticity

7.3.1 Vortex Lines

Closely associated with the velocity vector field we have another vector field, namely,
its curl. This is called the vorticity, and is defined as
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X - curly. (7.25)

Physically, a direct manifestation of vorticity is the occurrence of vortexes or eddies
(or “whirlpools”) in the flow. As you have already seen in Eq.(6.44) of Chap.6,
Sect.6.2.3, the vorticity at any point in the fluid is a direct measure of the local
angular velocity w of a fluid element at that point. Repeating that equation for ready
reference,

=

The field lines of the vorticity field are called vortex lines. The direction of the
vorticity vector at any point is tangential to the vortex line through that point. As in
the case of streamlines, different vortex lines cannot intersect, because the velocity
field and its curl must be unique at every point at any instant of time. If the veloc-
ity field is irrotational, there are no vortex lines at all. In that case, x = 0 everywhere.

You must not confuse a vortex line, which is just the field line of the vector field
curl v, with a vortex. The latter term is used for a singularity of the velocity field
around which the circulation of v is nonzero. We have already encountered an exam-
ple of a vortex in Chap. 6, Sect.6.2.3. Equation (6.50), v = (K /p) e, describes a
velocity field that has no vorticity, but has a vortex lying along the z-axis. Figure 7.2
schematically depicts a vortex in a fluid, a line singularity around which the circula-
tion of the velocity is nonzero.

Going back to Eq.(7.18) for steady, barotropic flow, it is easy to derive a result
that is analogous to Bernoulli’s Principle, Eq.(7.19). We have

dP v? .
—— 4+ ® + — = constant along each vortex line. (7.27)
p(P) 2

Fig. 7.2 A vortex or a line
singularity of the velocity
field. The circulation

ggc v - d{ around the
singularity is a measure of
the strength of the vortex



106 7 A Bit of Fluid Dynamics
% 4. Derive Eq. (7.27).

% 5.If v (r) = K xyzr where K is a constant, show that 'y is everywhere normal to
v for this flow.

Beltrami flow: In a general flow, the curl of the velocity, V x v, need not be normal
to the velocity vector v. Remember that V is not an ordinary vector, but a vector
differential operator! In fact, V x v can even be parallel to v (r). Such a flow is
called a Beltrami flow.

A special case of Beltrami flow arises when x(r) = kv (r) where k is a con-
stant, and the fluid is incompressible. The velocity field then satisfies the Helmholtz
equation

(VZ+ikHv=0. (7.28)

% 6.Establish Eq. (7.28), using the vector identity for V x (V x v) and the continuity
equation (7.2) for an incompressible fluid.

7.3.2 Equations in Terms of v Alone

Let us go back to Eq.(7.17) for barotropic flow. If the fluid is incompressible, we
can use the vorticity vector to obtain simpler equations that completely determine
the velocity field.

Taking the curl of both sides of Eq.(7.17) gives

X v DX~ (x Vv=0 (7.29)

where x = V X v, as already defined. This equation, together with the correspond-
ing equation of continuity V - v = 0, completely specifies the velocity field of an
inviscid, incompressible fluid.

% 7. Establish Eq.(7.29), using the vector identity for V x (v x x).
Using Eq. (7.7) for the total time derivative, we can rewrite Eq.(7.29) as

dx _
-~ V=0 (7.30)

This is a first-order differential equation in time for x. Therefore:
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o if the vorticity is zero everywhere at some instant of time #; in a barotropic flow,
then it remains zero for all time.

An even stronger result can be derived. It can be shown that there is a kind of “con-
servation of vorticity”, in the sense that the total circulation in the fluid remains
unchanged in time, although vortex filaments can move about within the fluid. I do
not go into the details here.

Note, however, that the foregoing results are based on the approximation that
viscous damping can be neglected. In a real fluid, one of the effects of the viscosity
of the fluid is to damp out vortices or eddies. Another effect is to cause transfer of
energy between eddies of different strengths and sizes. Clearly, the vorticity cannot
remain constant in time under such circumstances.

7.4 Flow of a Viscous Fluid

7.4.1 The Viscous Force in a Fluid

Viscosity is another name for the internal friction in a fluid. It is quantified by
means of a coefficient of viscosity, 7, defined as follows. Consider fluid flow in the
x-direction between two layers of area d A separated by a distance Jy (see Fig.7.3).
Newton’s empirical relation or “law of viscosity” connects the frictional force in this
volume element to the change in the velocity between the two layers, according to

dvy
SF = oA 2% (7.31)
oy

Here dv, /dy is the transverse velocity gradient. The constant of proportionality 7
is called the coefficient of viscosity of the fluid. It has the physical dimensions
(Ml =ML'T".

Fig. 7.3 Tllustrating

Newton’s empirical formula /
lon’s empirical forn 5A

for viscous drag in a fluid

=4
NS

A Uy
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Newton’s law of viscosity is generalized as follows, to define the class of New-
tonian fluids. The force per unit area, d F /J A, is the shear stress in the x-direction,
acting on faces normal to the y-direction. It is equal to 7 (§v, /dy), which tends to
1 0v, /Oy in the limit. This is generalized to the case of the shear components of the
stress tensor o according to

Ory = n(%';‘ + 88';) oy = n(%—"zy + Z—”;), 0o = n(% + %";). (7.32)

The symmetrization in the indices is required because the stress tensor is a symmetric
tensor (i.e., 0;; = 0;;), on general grounds. In physical terms, o, is the shear stress in
the x-direction on faces normal to the y-direction. o, and o, have analogous inter-
pretations. (I have already mentioned this in Chap. 5, Sect. 5.3.2.) The (x-component
of the) viscous force per unit volume is obtained, in the present case, by dividing
0F/0A by dy, because dA Jy is the volume of the element of fluid considered. This
gives (Fyise)y = 00y, /0y. More generally, it is given by

00y n 0oy 00

Fiise)x =
(Fuisc) Ox Oy 0z

(7.33)

By direct analogy, the other two components of the viscous force per unit volume
are

Ooyy 0oy
Ox + Oy + dz '

0oy (Fue). = 00, n Joy, n Jdo,

Fvisc = .
(Fuisc)y Ox Oy 0z

(7.34)

It only remains to substitute the expressions for the components of the stress tensor,
Egs. (7.32), in Egs. (7.33) and (7.34). Doing so yields

Fuse =1 [V?*V+V (V-v)]. (Newtonian fluid) (7.35)

Remember that Fi is the viscous force per unit volume of the fluid.

% 8. Derive Eq.(7.35) from Eqs. (7.32)-(7.34).

7.4.2 The Navier-Stokes Equation

We are finally in a position to write down the fundamental equation of motion of a
viscous fluid. Going back to Eq. (7.10) and using Eq. (7.35) for Fy;s., we get

VP
%—vx(va):———v(d>+§v2)+ﬁ[v2v+v(v.v)]. (7.36)
P P
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This is (one form of) the famous Navier—Stokes equation. Note that the equation
has now become a second-order partial differential equation. From the mathematical
point of view, this is a major complication, over and above the nonlinearity of the
equation in v. For these reasons, the Navier—Stokes equation presents very formidable
mathematical challenges that are far from resolved, to this day.

If the fluid is incompressible, V - v = 0. Equation (7.36) then simplifies to

ov P v M2
— —vXx(Vxv)V==-V[—4+d+—)+-=-V-V. (7.37)
ot p 2 p

Even in this simplified form, the mathematical complexity of the Navier—Stokes
equation persists. Take the curl of both sides of Eq.(7.37) and write )x = curl v as
usual. Since V x V?v = V2 (V x v), we obtain

IX _gxwxr+ ! vy, (7.38)
ot p

The quantity 7/p is called the kinematic viscosity.

e It is the ratio 7/ p, rather than 7 or p separately, that controls the behavior of the
velocity field.

Using the same vector identities as before, it is easy to see that

d
X x-yv+ Iv2y. (7.39)
dt p

Together with V - v = 0, this equation governs the motion of a viscous incompress-
ible fluid. Once again, its relatively simple appearance is deceptive. Its set of possible
solutions is incredibly complex. Turbulent flows lurk among these possibilities.

Here is another indication of the difficulties involved in solving Eq.(7.38) or
(7.39). Suppose we know the solution to the equation in the complete absence of
viscous damping, i.e., for n set equal to zero, in some given situation (that is, for
specified initial and boundary conditions). Now suppose the viscosity is nonzero,
but very small. One might imagine that the solution in this case could be obtained
by perturbation theory, with corrections of successively higher order in the small
parameter 1) added to the zero-viscosity solution. But this would be completely wrong,
in general, because n appears in the coefficient of the highest derivative (second
derivative) in the partial differential equation. Setting it equal to zero changes the very
order of the differential equation. Perturbation theory in powers of 7 is, therefore, not
possible, in general. One needs more sophisticated techniques from what is known
as singular perturbation theory. Fractional powers of 1 make their appearance in
the solutions. Among other effects, diverse boundary layer phenomena show up
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as physical manifestations of these complications. It is necessary to reiterate that
fluid dynamics presents problems of truly formidable mathematical complexity and
difficulty.

7.5 Solutions

1. When n # 1, we have

ov nKl/nP(n—l)/n v2
— —vXx (Vxv =—V(— (O] —)
ot ( ) n—1 Tet 2

When n = 1, we have

v (V x v) V(Kl P+<1>+Uz)
— —V X XV)=— n — ).
ot 2

Remark The power-law dependence P = K p" is widely used as a model in various
problems in fluid dynamics, including stellar dynamics in astrophysics. >

2. (a) Take the scalar product of each side of Eq.(7.18) with v: the left-hand side
vanishes identically. Recall that the gradient is the directional derivative: if the com-
ponent of the gradient of a scalar quantity along some direction vanishes, it means
that the quantity does not change as you move along that direction. Since the velocity
field at any point is tangential to the streamline through that point, Eq. (7.19) follows.

(b) V x v =0 for irrotational flow. If the gradient of a scalar quantity vanishes
identically in some region, all its components vanish. Hence the quantity does not
change from point to point in any direction, i.e., it must be constant throughout the
region. >

3. (a) On the streamline x> — y> = constant, we have x dx — ydy = 0,ordy/dx =
x/y. Recall (from elementary coordinate geometry!) that the normal to a straight
line with slope m is a straight line with slope —1/m. The normal to the streamline at
any point, therefore, has a slope given by dy/dx = —y/x. Integrating this equation,
we get xy = constant. The velocity potential is, therefore, given by ¢(x, y) = xy
(apart from irrelevant constant factors). The equipotentials are given by the fam-
ily of curves xy = constant. These are rectangular hyperbolas with the x and y
axes as the asymptotes. They are orthogonal to the family of rectangular hyperbolas

x? — y? = constant, which have the lines y = #x as their asymptotes.

(b) The curves x> 4+ y?> = C, where the constant C takes on positive values, are
concentric circles centered at the origin. The slope at any point is given by x dx +
ydy=0,ordy/dx = —x/y. The normal at any point, therefore, has aslopedy/dx =
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y/x.Integrating this, we get y = mx. The streamlines are, therefore, radial lines from
the origin to infinity in all directions in the plane. >

4. Take the dot product of both sides of Eq. (7.18) with x, and use an argument similar
to the one used in the case of a streamline. >

5. Writer = x e, + y e, + z e, and work in Cartesian coordinates. >
8. Here is yet another instance in which the index notation simplifies matters enor-
mously. Equations (7.32) are equivalent to o;; = n (J; v; + 0; v;), while Egs. (7.33)
and (7.34) tell us that (Fyisc); = 0; ;. Therefore

(Fvisc)i = 77(8] aj v; + 8[ aj 'Uj) =T [Vz v; + &- (V . V)],

which is just Eq. (7.35). >



Chapter 8 ®)
Some More Vector Calculus Chack or

8.1 Integral Theorems of Vector Calculus

From the point of view of physical applications, the most important among the
theorems of vector calculus are Gauss’s Theorem and Stokes’ Theorem. You are
undoubtedly already familiar with the elementary application of Gauss’s Theorem in
electrostatics, to find the electric field due to a charge distribution with spherical or
cylindrical symmetry; and the application of Stokes’ Theorem in magnetostatics, to
find the magnetic field due to a steady current in a long straight wire. As you know,
Gauss’ Theorem relates the integral of the divergence of a vector field over a volume
to the integral of the field over the closed surface enclosing the volume; while Stokes’
Theorem relates the integral of the curl of a vector field over an open surface to its
integral over the contour bounding the surface. Further, there is Green’s Theorem
in the plane, which is the planar counterpart of Stokes” Theorem.

8.1.1 The Fundamental Theorem of Calculus

At a basic level, there is really just one theorem! All the results mentioned above
are special cases of this single theorem. In order to see how this is so, however, one
needs some familiarity with calculus on manifolds in differential geometry, which I
do not go into here. But it is worth understanding the origin of this theorem in simple,
very informal terms. No claim to rigor is made here. I have left out details such as
the precise continuity requirements on the functions concerned, the sense in which
the integrals are to be defined (Riemann or Lebesgue), and so on.

Let x denote a real variable. We know that if ¢(x) is the primitive of f(x), i.e., if
the indefinite integral [ f(x)dx = ¢(x), then f: f(x)dx = ¢(b) — ¢(a), where a
and b are real numbers. This is the fundamental theorem of the calculus, in its most
elementary form. f(x) is the derivative of ¢(x), so that fa b ¢’ (x)dx = ¢(b) — ¢(a).
Note that the boundary of the open interval (a, b) comprises the two points ¢ and
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Fig. 8.1 Line integral of a

gradient Ty

b. This is a special case of a more general result. If ¢(r) is a scalar field, and C is a
contour running from the point r; to the point r, , then

/ Vo - dl = ¢(rz) — ¢(ry). (8.1)
c

The left-hand side is the integral of a certain derivative of the field over a one-
dimensional region, the contour C. On the right-hand side, we have an “integral” (or
algebraic sum) of the field over the boundary of the region—in this instance, just the
zero-dimensional pair of end points of C, as illustrated in Fig.8.1.

What emerges from calculus on manifolds is a profound extension of this rela-
tionship, the fundamental theorem of calculus: The integral of a certain quantity
over a d-dimensional region is equal to the integral of a related quantity over the
(d — 1)-dimensional boundary of that region; and the first quantity is, in a certain
sense, the “derivative” of the second. I have quoted the precise result in Eq. (8.19)
below, purely for the sake of completeness.

8.1.2 Stokes’ Theorem

Stokes’ Theorem takes the simple relationship given by Eq. (8.1) to the next stage: it
relates the two-dimensional or surface integral of a certain derivative of a vector field
to a one-dimensional integral—namely, to the circulation of the vector field over the
oriented closed curve representing the boundary of the surface. Let u(r) be a vector
field that is well-defined and nonsingular at all points on an open surface S and on
its boundary, namely, the closed contour C. Then

/(qu)-dS:%wd(, (8.2)
s c

where the direction in which C is traversed is such that the surface S which it bounds
always lies to one’s left. (Recall that 9§c denotes a line integral over the oriented closed
contour C.) This ensures consistency with the right-hand rule already mentioned: the
unit normal to an area element dS is along the direction in which a right-handed screw
progresses as the boundary of the element is traversed. Note that S need not be a
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Fig. 8.2 Two open surfaces S’
S and S’ that are bounded by
the contour C

planar surface. Moreover, given a closed contour C, the surface S that it bounds is
certainly not unique. Equation (8.2) is applicable, then, to any surface bounded by
C, as long as the vector field is well-defined at all points on it. Figure 8.2 shows two
such surfaces, S and S’, that share a common boundary C.

% 1.Several special cases of Stokes’ Theorem follow readily. For instance, if ¢(r)

is a scalar field, show that
/deVqS:?qud(.
s c

8.1.3 Green’s Theorem

Green’s Theorem in the plane is a special case of Stokes” Theorem. Let
u(r) = uy(x,y)e. +uy(x,y)ey (8.3)

be a vector field in the xy-plane. If § is a region of the plane bounded by the contour

C, then
Ouy,  Ou,
_ —bu-dt= . . 4
/S(ax ay)ds ?fcu de fc(u dx + u, dy) (8.4)

The final equation above follows from the fact that d¢ = e, dx + e, dy. Equation
(8.4) is Green’s Theorem in the plane.

Special case: When u is the gradient of a scalar field, i.e., u = V¢, we have u, =
0¢/0x and u, = 0¢/0y. The right-hand side in Green’s Theorem is then given by

u-di=q¢ Vo-de=p dp=0, (8.5)
fu-de=f vouae=y

because the scalar field ¢(r) is supposed to be single-valued. The left-hand side of
Eq. (8.4) also vanishes, because of the “integrability condition”
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Po
oxdy  Oyox’

(8.6)

But you are already familiar with this result from elementary calculus! It is usually
stated there in the following terms:

e P(x,y)dx+ Q(x,y)dy is an exact differential if and only if OP/0y =
0Q/0x.

Area formula: Green’s Theorem also provides us with an explicit formula for the
area S enclosed by a simple closed contour C in the plane. Consider the vector field

u(r) =—ye, +xe,. (8.7)

Therefore Ou,/0x = —0u, /0y = 1. Equation (8.4) then gives the area formula

/dszszgf(xdy—ydx). (8.8)
N C

In other words, the evaluation of an area, which is given by a double integral, has been
reduced to a single integration. There is a simple way to understand this formula. In
general, if r is the position vector of a point in space, the area element representing
the infinitesimal triangle formed by the three vectors r, dr, and r + dr is given by
%(r x dr). And in two dimensions, the counterpart of the cross product (r x dr) is
given by ¢;; x; dx; = xdy — ydx, since €;p = —€3; = 1.

8.1.4 A Topological Restriction; “Exact” Versus “Closed”

A very important condition must be kept in mind concerning the applicability of
Green’s Theorem (more generally, of Stokes’ Theorem). This is best understood
with the help of a simple example.

The azimuthal angle in plane polar coordinates is given by ¢ = tan~!(y/x). There-

fore
—y x

dp = d dy. 8.9
Hence d is of the form P dx + Q dy, with
orP 0 2 _x?
_00_ yox (8.10)

Iy x4y

A blind application of Green’s Theorem (Eq.(8.4)) would, therefore, demand that
y?c do = fc V - d€ be equal to zero, for any closed contour C. And this is indeed
s0, except when the contour C encircles the origin of coordinates a nonzero number
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of times. In the latter case, of course, 9§c dyp =2nm # 0, where the integer n is
the number of times that C winds around the origin. Here # is positive (respectively,
negative) for encirclement in the anticlockwise (respectively, clockwise) sense. Thus,
there is an apparent violation of Stokes” Theorem (or Green’s Theorem, in this case).

The resolution of this difficulty lies in the fact that the vector field V is singular at
the origin. (In fact, the azimuthal angle ¢ is indeterminate at the origin, as you know.)
Recall that we have already encountered this field in the form K Vo = (K /) e,
(where K is a constant) in Chap. 6, Sect.6.2.3, as a model of the velocity field in
fluid flow around a vortex at the origin.

e Stokes’ Theorem (Eq.(8.2)), or Green’s Theorem (Eq. (8.4)) is not valid when the
vector field u has singularities on the surface S or on the contour C bounding the
surface.

There is another way out. We could try to eliminate the singularity at the origin
by a mathematical device. What if we removed the origin of coordinates from the
space, and considered the punctured plane, denoted by R? — {(0, 0)}? The curl of
the vector field

—y x
u(r) = e e, + ey e, (8.11)
vanishes at all points in this punctured space. And, in accordance with Stokes’ The-
orem, the circulation fc u - d{ of this vector field around any closed contour C also
vanishes, as long as the winding number of C around the origin is zero. Figure 8.3a
shows a closed contour over which the circulation of u vanishes. The contour in this
case is deformable to the contours C; and C, shown in Fig.8.3b. Observe that it
comprises two closed paths, each of which encircles the origin once, but in opposite
senses. In contrast, the circulation of u around the closed path C in Fig.8.3c does
not vanish. This again appears to be a violation of Stokes’ Theorem. But there is, in
fact, no contradiction here, for the following reason:

e Stokes’ Theorem requires that the surface S be simply-connected: that is, any
closed path in it must be continuously shrinkable to a point, without leaving the

(a) (b) (©
Y y 2y

G

Fig. 8.3 Contours of integration in the punctured plane. The origin is indicated by a cross to show
that it does not belong to the space. a The closed contour shown does not enclose the origin. It is
equivalent to the pair of contours C; and C, shown in (b). The closed contour in (c) does enclose
the origin
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surface. (More precisely, the space must be “contractible” in a certain precise
mathematical sense.)

e The punctured plane, on the other hand, is not simply-connected. Any closed path
that has a nonzero winding number around the origin (i.e., the puncture or deleted
point) cannot be smoothly and continuously shrunk to a point without leaving the
space.

Thus, there is a fopological restriction on the applicability of Stokes’ Theorem: the
requirement of simple connectivity on the surface concerned.

The example we have just considered is the simplest one that helps us understand a
fundamental aspect of differential geometry: the distinction between what is known as
aclosed differential form and an exact differential form. Because of its importance,
I will mention it here, although I have stated more than once that differential geometry
is outside the scope of this book.

e In the punctured plane, the one-form d is closed but not exact.
e An exact form is closed, but the converse is only true locally, and not necessarily
globally, precisely because the topology may be “nontrivial”.

The reason I mention this (albeit without further explanation) is because it is the
starting point of some far-reaching developments in mathematics.

8.1.5 Gauss’s Theorem

Gauss’s Theorem increases once again the dimensionality of the integrals in the
fundamental theorem of the calculus. For a three-dimensional compact region of
volume V, enclosed by the two-dimensional closed surface S, we have

f(V-u)dV:fu-dS. (8.12)
1% S

The symbol ggs denotes an integral over a closed surface S. Recall that the unit normal
of each area element on S is the outward normal. As in the case of the previous
theorems, it is assumed that the vector field u(r) is well-behaved at all points in V
and on S. More specifically, is assumed that V is compact, its surface § is piecewise
smooth, and that u is continuously differentiable in the region concerned.

The most familiar physical application of Gauss’s Theorem, of course, is encoun-
tered in electrostatics. Gauss’s Law relates the flux of the electrostatic field over a
closed surface to the total charge enclosed by the surface. This law follows directly
from the application of Gauss’s Theorem to a vector field with an inverse-square law
fall-off.

Several special cases of Gauss’s Theorem follow readily. For instance, if ¢(r) is
a scalar field, then
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/(v $)dV = f b dS. (8.13)
\4 S

Similarly, if v(r) is a vector field,

/(va)dV:?gdev. (8.14)
v s

More generally, for two vector fields v(r) and w(r),

/[Wo(va)—V~(Vxw)]dV:f(vxw)odS. (8.15)
14 s

% 2.Establish (a) Eq.(8.13) (b) Eq.(8.14) (c) Eq.(8.15).

% 3. Gauss’s Theorem can be quite useful in evaluating certain integrals.

(a) Let S be a closed surface enclosing a volume V in three-dimensional space.
Show that

%V(rz) -dS =6V.
S

(b) Let S be the surface of a toroid that is centered at the origin, with radius a and
cross-sectional radius b. Show that

yf r-dS = 6r’ab’.
S

(c) Consider the vector field u(r) = a ¢’** where a and k are constant vectors. Let
V and S denote the volume and surface of a sphere of radius R centered at the

origin. Show that

a) {sin (kR) — kR cos (kR) }

.dS = 47 R3(ik -
ygu ds TR (i (R

8.1.6 Green’s Identities and Reciprocity Relation

Gauss’s Theorem leads to two identities that are quite useful in applications.

Let S be a closed surface enclosing a volume V, and let ¢ and 1) be two scalar
fields that are regular in V and on S. Then, applying Gauss’s Theorem to the vector
field v V ¢, it follows that
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> _ _ ds— & 22
/V(wv b+ Vo w)dv_ygqus ds_ﬁwandS, (8.16)

where 0¢/0n denotes the rate of change of ¢ in the direction of the unit normal n to
the surface element dS. This is Green’s first identity.

Interchanging ¢ and ¢ in the above and subtracting the result from Eq. (8.16), the
V¢ - Vi) term cancels out. We get

/V(wqu— V) dV = f? (d}% —~ Z—f) ds. (8.17)

This is Green’s second identity. It is used, for instance, in electrostatics and in
scattering theory in quantum mechanics.

Green’s reciprocity relation in electrostatics should be familiar to you. Let ¢(r) be
the electrostatic potential due to a static charge distribution p(r) that is confined to
a finite region of space, so that ¢ vanishes at spatial infinity. Similarly, let ¢'(r) be
the electrostatic potential due to a finite charge distribution p’(r). Then

/¢(r)p'(r)dV =/¢'(r)P(r)dV, (8.18)

where the volume integrals extend over all space.
% 4. Derive Eq. (8.18).

8.1.7 Comment on the Generalized Stokes’ Theorem

I have already mentioned that all the theorems in the foregoing are particular cases of
the fundamental theorem of calculus on manifolds, called (the generalized) Stokes’
Theorem. In order to pique your curiosity, I merely state this theorem, with an
admittedly very cursory (and heuristic) explanation of the terms involved.!
Differential geometry is concerned with differentiable manifolds. Smooth curves
and smooth surfaces are, respectively, examples of one-dimensional and two-
dimensional manifolds. Their generalizations in higher dimensions are manifolds
in three or more dimensions. “Differentiable” essentially means that you can treat a
small neighborhood of any point in the manifold as a patch of Euclidean space, and

!deally, an elementary account of differential geometry ought to have been included in this book.
It would have made the discussion of several other topics included here more unified and compact.
I have, however, decided against including some differential geometry for several reasons. Among
these are the following. A self-contained account would take up too much space; and the subject
is not (yet) in the standard curriculum for most students of physics and engineering, although this
situation is changing rapidly.
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carry out the familiar operations of calculus in it. If the (right-handed, say) Cartesian
coordinate system that you start with at any point can be moved around everywhere
on the manifold and brought back to the starting point without undergoing a change
of orientation (or “handedness”), the manifold is an oriented differentiable manifold.

On such a manifold, one defines so-called differential forms. A zero-form is a
function (of the local coordinates). An operation called exterior differentiation is
defined, with the help of which higher order forms can be constructed. A one-form
is the differential of a function. Higher order forms are the analogs of area elements,
volume elements, and so on. They are constructed with the help of a generalization
of the idea of a cross product, called the wedge product. Scalar, vector, and tensor
fields are most naturally expressed in the language of differential geometry.

The generalized Stokes’ Theorem then says

e Ifwisan (n — 1)-form with compact support on a smooth oriented n-dimensional
manifold M with boundary 0M, and d denotes the exterior derivative, then

/dw:% w. (8.19)
M oM

In other words, the integral of the n-form dw over M is equal to the integral of the
(n — 1)-form w over its boundary OM.

For further details, you must refer to a text on differential geometry.

8.2 Harmonic Functions

Laplace’s equation, V2¢ = 0, is one of the most basic equations of mathematical
physics. It appears in a wide variety of situations. To give just two instances, the
electrostatic potential in a charge-free region satisfies this equation; so do the velocity
potential and stream function of an incompressible fluid in irrotational flow, as you
have seen already in Eqs. (7.22) and (7.23) of Chap.7, Sect.7.2.4.

8.2.1 Mean Value Property

The solutions of Laplace’s equation in a given domain are harmonic functions in
that domain. These functions have many interesting and important properties. In one
dimension, harmonic functions are trivially found, because d?¢/dx> = 0 simply
implies that ¢ is a linear function of x, i.e., ¢(x) = ax + b. But this also means that
the value of the function at any point x is the arithmetic average of its values at
points symmetrically placed on either side of x, i.e.,

¢(x) = 3[o(x + ) + o(x — ). (8.20)
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Fig. 8.4 A linear function d)( x) 4
satisfies the mean value

property of Eq.(8.200. | /
Functions that have curvature )

(shown by dotted lines) do

not satisfy this property /

Ky
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Fig. 8.5 The value of a

. . (a) (b)
harmonic function at the
point P is the arithmetic
mean of its values on a a
circle centered at P, in two
dimensions; b a sphere
centered at P, in three
dimensions

The lack of curvature of a straight line guarantees that this remains true for any
value of €, not necessarily infinitesimal. Figure 8.4 illustrates this property. Rewriting
Eq.(8.20) as [¢p(x + €) — ¢(x)] — [#(x) — ¢(x — €)] = 0, dividing this by €2, and
taking the limit € — 0 takes us back to Laplace’s equation d’>¢/dx* = 0.

The same average or mean value property leads to Laplace’s equation in any
number of dimensions. In two dimensions, for instance, suppose we impose (again,
for any value of €) the requirement

o, y) =Hox +e. ) +o(x —e,y) +d(x,y +o) +ox,y —e)].  (8.21)

Dividing the equation by ¢> and passing to the limit ¢ — 0 leads to 9?¢/0x> +
0*¢/0y* = 0. In fact, the arguments of the functions on the right-hand side in
Eq.(8.21) can be those of any four points symmetrically located about (x, y). That
is, they could be located on the corners of any square whose center is at (x, y). The
sides of the square need not be parallel to the coordinate axes. This would still lead
to V2¢ = 0, because the Laplacian operator is a scalar. It is invariant under rotations
about the origin. Going a step further, this means that ¢(x, y) is actually the mean
of the values at all points on a circle of radius e centered at (x, y).

The extension of this discussion to higher dimensions is straightforward.
Figures 8.5 a and b illustrate this property in two and three dimensions, respec-
tively. Imposing the mean value property leads to Laplace’s equation and hence
implies a harmonic function. Conversely, we may start with a harmonic function
(i.e., a solution of Laplace’s equation), and ask whether the mean value property
is satisfied. This is called the mean value theorem for harmonic functions. In an
arbitrary number d of dimensions, a harmonic function ¢(r) satisfies
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1 1
H(r) = 7/ dv'é@x') = S—f ds’ o). (8.22)
d Jball d J sphere

Here, “ball” denotes a hypersphere of arbitrary radius R centered at r, and “sphere”
stands for its hypersurface. Recall that the “volume” V; of the ball, and the “area” S,
of its “surface”, have already been recorded in Egs. (6.18) and (6.21), respectively,
of Chap. 6, Sect. 6.1.3. Repeating them for ready reference,

2d/2 Rd 27d/2 Rd-1

F(l—_'_%d) and Sd(R) = W

2
% 5. Let ¢(r) be a harmonic function in some region. If V is a volume in this region
bounded by the closed surface S, show that

Vi(R) = (8.23)

(a) f%dszo and (b) f|v¢|2dvzy§¢%ds.
San Vv Ky on

8.2.2 Harmonic Functions Have No Absolute Maxima or
Minima

Let us return to Laplace’s equation. It is immediately clear that its solutions in dimen-
sions d > 2 need not be restricted to functions that are linear in the Cartesian coor-
dinates. The simple reason is that it is the sum of second derivatives, Zle ¢/ 8xi2,
that is required to vanish—and not the individual second derivatives themselves.

e The set of harmonic functions is quite extensive in d > 2, and has a rich structure.

In Chap. 7, Sect. 7.2.4, 1 have mentioned that the velocity potential ¢(x, y) and stream
function ¥(x, y) in the two-dimensional irrotational flow of an incompressible fluid
satisfy the Cauchy—Riemann conditions (7.24), and are harmonic functions. The
real and imaginary parts of any analytic function of a complex variable z = x + iy
satisfy these conditions, and are harmonic functions in specified regions of the xy-
plane. Analytic functions of a complex variable will be considered in Chaps. 22-27.
In Chap. 16, Sect.16.4.7, we will discuss another very useful class of harmonic
functions in three-dimensional space—namely, spherical harmonics.

Another important property of harmonic functions emerges readily. Consider a
function ¢(x , ..., xy4) of the coordinates in d-dimensional space. As you know, at an
absolute maximum of such a function, each of the second derivatives 9> ¢/dx7 (where
1 < j < d)mustbe positive. Similarly, at an absolute minimum, each §*¢/ asz must
be negative. Hence their sum cannot add up to zero in either case. That is, ¢ cannot
be a harmonic function if it has absolute maxima or minima.

e A harmonic function cannot have an absolute maximum or minimum at any point
in the interior of a region in which it is harmonic.
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(@) (b) (c)
P

Fig. 8.6 Surfaces representing a function of two variables with a an absolute maximum, b an
absolute minimum, and ¢ a saddle point

Thus, a harmonic function can have maxima or minima, if any, only at points on the
boundary of the region in which it is harmonic. But it can, of course, have critical
points where the first derivative d¢/0x; = 0 for every j, at points within the region.
In the calculus of functions of several variables, the critical points of a function
¢(x1, ..., xq) are the points at which its gradient V¢ vanishes. In the generic case,
these must necessarily be points where there is a local minimum with respect to
some of the coordinates, and a local maximum with respect to some others. In other
words, these must be saddle points. Figures 8.6 a—c depict the distinction between a
maximum, minimum, and saddle point in the two-dimensional case. Simple examples
are provided by the functions —x? — y2, x? + y?, and x> — y?, respectively. Each of
these functions has a critical point at (0, 0). The first two are not harmonic functions,
while the last one is.

The absence of absolute minima in a harmonic function has an interesting physical
consequence: There can be no point of stable equilibrium for a test charge placed
in the electrostatic field of a given set of charges. The electrostatic potential at any
point not occupied by any of the given set of charges satisfies Laplace’s equation.
Hence it cannot have a minimum at any such point. Equivalently:

e A set of charges cannot be held in stable equilibrium by electrostatic forces alone.
This is known as Earnshaw’s Theorem in electrostatics.

e All equilibrium points in electrostatics are, therefore, of the saddle-point type, and
are unstable.

8.2.3 What Is the Significance of the Laplacian?

In Sect.6.2.6, I stated that the Laplacian and its generalizations “are of deep and
profound significance” from the mathematical point of view. I now explain briefly
why this is so, without really going into the technical details (which are beyond the
scope of this book).
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The solutions of Laplace’s equation, V2¢ = 0, may be regarded as the eigenfunc-
tions of the Laplacian operator” corresponding to the eigenvalue 0. More generally,

we have the eigenvalue equation
—V2p = Ao (8.24)

This is just the Helmholtz equation. In order to identify the distinct solutions of
this differential equation (i.e., the eigenfunctions of the operator —V?) and the cor-
responding eigenvalues (the spectrum of the operator), we must specify boundary
conditions. Typically, one considers the equation in some bounded region R of d-
dimensional Euclidean space, with the condition ¢ = 0 at all points on the boundary
of R. These are called Dirichlet boundary conditions. Some far-reaching mathe-
matical results can then be deduced:

e The eigenvalues of —V? comprise an infinite set of positive real numbers )\, (n =
1,2,...), such that

O<Ai<AM=<X<=<..., where \, > 00 as n — oo. (8.25)

e These eigenvalues, called the Dirichlet eigenvalues of the Laplacian, are propor-
tional to the squares of the frequencies of the normal modes of vibration of the
region concerned.

Observe that 0 is not one of the eigenvalues in this set. A harmonic function (other
than the trivial function that is identically equal to zero) cannot vanish at all points on
the boundary of a finite region, i.e., it cannot satisfy the Dirichlet boundary condition.
The positivity of the eigenvalues is the reason why it is more convenient to consider
the operator —V? rather than V? itself.

e Remarkably enough, a knowledge of the spectrum {),} of the Laplacian operator
in R is tantamount to a detailed knowledge of the geometry and topology of R
itself.

These statements can be extended to curved spaces called Riemannian manifolds.
The generalization of the Laplacian operator to that case is called the Laplace—
Beltrami operator.

The extent to which the spectrum determines the domain is a topic on which a
vast mathematical literature exists. A particular aspect of the problem is famously?
represented by the question, “Can you hear the shape of a drum?” In other words,
if we know all the natural frequencies of vibration of a drumhead, can we work
backwards to deduce the exact shape of the drumhead uniquely (up to an isometry or
congruence)? The answer, it turns out, is “no”, in general. Although the “shape of a
drum” question refers to the situation in two dimensions, the general problem pertains

2Some of these terms may be unfamiliar to you, but they will become clear after the discussion of
linear vector spaces and operators in Chaps. 10-15.

3Made famous by the mathematical physicist Mark Kac (1910-1984).
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to any number of dimensions d > 2. There exist regions that are not isometric to each
other, and yet have exactly the same set of Dirichlet eigenvalues. Such shapes are
said to be isospectral domains.

Returning to the spectrum itself, an early result due to H. Weyl is the following. Let
V be the “volume” of a compact d-dimensional manifold R, and S its “surface area”.
Then, if N (b) is the number of eigenvalues of —V? that are less than a prescribed
positive number b,

14
N(b) = Wbd/z + ¢(d) S b“"D/2 4 terms of lower order in b, (8.26)
s

where c(d) is a known constant that depends on the dimensionality of the manifold.
The coefficients of the lower order terms depend on other properties of the domain
such as its connectivity.

Similar information is carried by the generating function G(t) defined as

Gty=Y e, (8.27)
n=1

where ¢ is a positive variable. The properties of G(#) as a function of ¢ are important.
Clearly, when ¢ is very large, G(t) is dominated by its leading term, e~*1’. Now, a
great deal is known about the leading eigenvalue J; . In particular, it is the solution to
a minimization problem. Consider all functions f(r) that are square-integrable in R,
i.e., for which the integral | vavif |? is finite. Then the eigenfunction corresponding
to \; is the function for which the integral of || vavivy |? is the least. More precisely,

8.28
JyavifP (629

dV |V f?
A1 = liminf {M}

Here “lim inf” denotes, as usual, the greatest lower bound of the quantity concerned,
over all square-integrable functions in R. Equation (8.28) is often used in variational
problems in several contexts.

The behavior of G(¢) for small values of ¢ is far more intricate and interesting. It
is obvious that G(r) — oo ast — 0, because each term in the infinite sum tends to
unity. The precise manner in which G(¢) diverges is informative. It turns out that, as
t — 0, G(¢) is given by an asymptotic series in powers of t'/?. In three dimensions,
for instance, this series takes the form

S
=32 2l 2 0 ey 2
(27r)3/2t l67rt + ()t +C)EF )T
(8.29)

Once again, the coefficients of the successive terms in this series carry both geometric
and topological information about the region concerned. Formulas of this kind have

G(t) ~
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deep generalizations, and they have applications in several parts of theoretical physics
such as statistical physics and quantum field theory, among others.

Even more generally, the Laplacian can be extended to the case of differential
forms of arbitrary order. It is then called the Laplace-de Rham operator. This
operator is intimately related to the Laplace—Beltrami operator, and shares many of its
properties. The Laplacian is thus of fundamental importance. Mathematicians strive
continually for extensions and generalizations. The Laplacian itself is prototypical of
a class of differential operators called elliptic operators, whose properties continue
to be studied in depth.

In Chap. 29, the fundamental Green function corresponding to the Laplacian oper-
ator in d-dimensional Euclidean space will be derived, in connection with the solution
of Poisson’s equation.

8.3 Singularities of Planar Vector Fields

In all the theorems of vector calculus discussed above, it has been assumed that the
vector fields involved are not singular at any point in the regions of interest. The
study of the singularities of vector fields is a subject in its own right. Going into it
here will take us too far afield. But it is useful to understand at least the simplest of
cases, namely, point singularities of vector fields in a two-dimensional plane. Among
other applications, an important one is to the analysis of two-dimensional dynamical
systems.

8.3.1 Critical Points and the Poincaré Index

The planar vector field
u(r) =u(x,y)e; +v(x,y)e, (8.30)

is obviously singular at points where either u, or v, or both become infinite. More
interestingly, the vector field is also singular at points where it vanishes, i.e., at points
that are the common roots of the simultaneous equations

u(x,y)=0 and v(x,y) =0. (8.31)

Such points are called the critical points of the vector field. I use this term in a
generic sense. As mentioned in Sect.8.2.2, the critical points of a scalar function
o(x1, x2, ..., xg) are the points where Vo = 0.

An important characterizer of a critical point is an integer called its Poincaré
index. It is defined as
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def. 1 (udv —vdu)

— ) —, 8.32
2 Joo (W% +0?) (8.32)

where C encircles the singularity once in the positive (or anticlockwise) sense, and
does not encircle any other singularity of the vector field. The expression on the
right-hand side of Eq.(8.32) is guaranteed to be an integer, no matter what u(x , y)
and v(x, y) are, as along as these functions are single-valued. It is not difficult to
see why this is so, and where the formula for n comes from. Just as we can combine
x and y to form the complex variable z = x + iy, we can combine u and v to form
the complex number ( = u + iv. This complex number can be written in polar form
as ( = R e'Y. Making a complete circuit around the singularity of the vector field
must change the argument ¢/ by an integer multiple of 27, since u and v are supposed
to be single-valued at all nonsingular points. Hence fc dvy = 27n. Equation (8.32)
follows on using the fact that

udv—vdu

Y =tan'(v/u) = diy= g

(8.33)

The Poincaré index n, also called the winding number, is a property of the
singularity concerned. It is a topological invariant: A/l contours that encircle the
singularity once in the positive sense yield the same value of n. The contour integral
on the right-hand side of Eq.(8.32) is an explicit analytical expression. For this
reason, n is called an analytical topological invariant.

e If C does not enclose any singularity of the vector field at all, then ¢ returns to its
original value when the complete circuit is traversed, and n = 0.

The converse is not true: if the winding number of a contour C is zero, it does not
follow that there is no singularity enclosed by the contour, as you will see shorly.

The simplest singularities of a planar vector field are easily understood with the
help of a set of representative examples. Consider the eight planar vector fields listed
below, each with a singularity at the origin of coordinates:

(@) xe.+ye, (b) ye —xe

() xe,—ye, (d) ye, +xe,
(8.34)
(e) —xe,—ye, (f) —yer+xey

(g) _xex+yey (h) —Yye€r —XE€y,

% 6. Sketch the field lines, and find the Poincaré index of the singularity at (0, 0)
of each of the vector fields in (8.34)(a)—(h).

These examples help us classify the elementary singularities of a planar vector
field. The origin is a node in cases (a) and (e). The former is like a source, while
the latter is like a sink. Note that both of these critical points have the same Poincaré



8.3 Singularities of Planar Vector Fields 129

Fig. 8.7 The field lines in ¥ =

the vicinity of a node can be r

continuously deformed to / / —> ~
look like those around a

center t / X

index, contrary to what you might guess off-hand. In (b) and (f), we have an elliptic
critical point, called a center. Once again, contrary to what one might guess, the
Poincaré index does not depend on whether the field lines encircle the critical point
in the clockwise sense or anticlockwise sense. In all the foregoing cases, the index
is given by n = +1. In cases (c), (d), (g), and (h), the origin is a hyperbolic critical
point, called a saddle point. In these cases, n = —1.

What is the significance of the fact that the index (n = +1) at a node (with radial
field lines) is the same as that of a center (concentric circles as field lines)? It means
that either one of the two field patterns can be deformed smoothly and continuously
to the other pattern. For instance, radial field lines emanating from the origin can
be gradually bent over as we move away from the origin, till the field lines look
tangential to circles at a sufficiently large distance from the critical point. This is
illustrated in Fig.8.7. Similarly, the fact that the Poincaré index of a saddle point
is different from that of a node or center means that the field lines in the two cases
cannot be deformed smoothly and continuously into each other. The two cases are
topologically distinct from each other.

The vector fields in (8.34) are the simplest ones illustrating the singularities
described above. Now consider a general critical point located at some point (X, ),
say. Thatis, u(x.y) = Oand v(x.y) = 0. In the neighborhood of the critical point, we
may expand the functions u and v in Taylor series in powers of (x — x) and (y — y).
Thus

u(x,y) = (x — %) (Qu/0x) 5 + (v — ) (Qu/0y) g5+ -+

(8.35)
V() = (x = 5) (Q0/00) e 5y + (v = §) (O0/0Y) 5y + - }

where the dots stand for quadratic and higher order terms in (x — Xx) and (y — y). The
subscripts outside the brackets indicate that the partial derivatives are to be evaluated
at (x, y). The critical point at (x, y) is simple or nondegenerate if the determinant
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of the Jacobian matrix L of partial derivatives at that point does not vanish. That is,
if
(3M/ax)(x,y) (3’4/8)’)@,@

0. (8.36)
(0v/0x) (x5 (Ov/0Y) s 3

etL=‘

This is the standard, or generic, situation. It means that the components of the vector
field u are well approximated, in the vicinity of the critical point, by terms that are
linear in the shifted coordinates (x — x) and (y — y).

% 7.Show that, for a simple critical point, the Poincaré index

_ +1if detL >0
") =1if detL <o.

% 8.Show that det L < 0 if and only if the two eigenvalues of the Jacobian matrix
L are real and opposite in sign. This is precisely the case in which the critical point
is a saddle point.

Classification of simple critical points: For the sake of completeness, here is the
classification of simple critical points of planar vector fields, in brief. Recall that
examples of a node, a center and a saddle point have already been encountered.

(i) A node, if the two eigenvalues are real and have the same sign.
(i1) A saddle point, if the two eigenvalues are real and have opposite signs.
(iii) A center, if the two eigenvalues are pure imaginary.
(iv) A spiral point (also called a focus), if the eigenvalues are a complex conjugate
pair with a nonzero imaginary part.

All other instances are sub-cases of the above.

8.3.2 Degenerate Critical Points and Unfolding Singularities

In general, a planar vector field may have several critical points, as the functions
u(x,y) and v(x, y) may be nonlinear. The simultaneous equations u =0, v =0
may then have more than one set of real solutions in x and y.

Suppose the contour C on the right-hand side of Eq.(8.32) encloses more than
one critical point of the vector field u, as in Fig. 8.8a. It can then be deformed into
the contour in Fig. 8.8b, and finally to a sum of disjoint pieces as in Fig. 8.8c, each
of which encloses just one singularity. The value of the original contour integral
does not change during this deformation process. An important consequence follows
immediately:
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&
©

Fig. 8.8 a A contour enclosing three critical points of a vector field u (marked by crosses). b, ¢ Its
successive deformations

(@ (b) (c)

®

e If C encloses more than one singularity of the vector field, the net value of the
integer n is the algebraic sum of the Poincaré indices of the individual singulari-
ties.*

e If C does not enclose any singularity of the vector field, the integral over C is zero.
But the converse is not necessarily true.

For instance, if C encloses a node as well as a saddle point, the net value of n =
1 — 1 = 0. Here is an illustrative example of what happens in this situation. Consider
the vector field

ur) =x(x —a)e, —ye,, (8.37)

where a is a positive constant. It is clear that the field has two critical points, at (0, 0)
and (a, 0), respectively. An inspection of the Jacobian matrix L at each of these
points shows that (0, 0) is a node, while (a, 0) is a saddle point.

% 9.Consider the vector field given by Eq. (8.37).
(a) Schematically sketch the field lines of u(r).

. 1 udv—vdu .
(b) Show that the contour integral — ¢ —————— is equal to
2 Je  u? 4+ v?

(i) +1, if C only encircles (0, 0) once in the positive sense;
(i) —1, if C only encircles (a, 0) once in the positive sense;
(iii) 0, if C encircles both critical points once in the positive sense.

(c) Sketch the field lines of u(r) in the limit a — 0.

In the limit @ — 0, the vector field in Eq. (8.37) becomes
ur) =x’e, —ye,. (8.38)

This field has a single singularity, located at the origin. However, it is a higher order or
degenerate critical point. The component u of the vector field is no longer generic,

“This result should remind you of Cauchy’s residue theorem for a contour integral in which the
contour encloses several poles of the integrand. See Eq. (23.23) of Chap. 23, Sect.23.3.2.
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Fig. 8.9 Field lines in the
vicinity of the saddle-node
singularity of the vector field
in Eq. (8.38) v

A\ 4
Y

in the sense that it has no terms that are linear in the coordinates. In the linear
approximation, we would have to set this component equal to zero identically. It is
therefore clear that naive linearization fails in such instances. This situation is typical
of degenerate critical points. On the other hand, the example above shows how the
critical point arises from the coalescence of two simple critical points, namely, the
node at (0, 0) and the saddle point at (a, 0), as a — 0 from above. Hence the critical
point is called a saddle node. Figure 8.9 shows the field pattern of the vector field in
Eq. (8.38) in the vicinity of the saddle node at the origin.

This example suggests a general technique. When we are faced with a degen-
erate critical point, with vector field components that are intrinsically nonlinear in
its vicinity, we must convert the nonlinear functions to limits of products of linear
factors. This reverse process is called unfolding. There is a well-defined mathemati-
cal procedure that classifies the different distinct kinds of nonlinearities (for regular,
differentiable functions) and their unfolding. This procedure is a part of what is
called catastrophe theory, which falls under the purview of bifurcation theory in
the study of dynamical systems, and of singularity theory and Morse theory in
algebra. A bifurcation is said to occur in a dynamical system if there is an abrupt
qualitative change in its behavior, when a parameter is changed by an infinitesimal
amount across a threshold value.

% 10. Consider the following planar vector fields:

D u) = x> —yHe, +2xye, (i)u) =xx>—3y") e, +y3x? —y?H)e,.

(a) Sketch the field lines in each case. Note that (0, 0) is the only critical point in
both cases.

(b) Show that the Poincaré index of the critical point is n = 2 in case (i), and n = 3
in case (ii).

(c) Unfold the singularity in case (i) by replacing z> with z(z — €) where € is a small
positive number (say). The vector field is then given by
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2
ur) =[x(x —¢) —yle,+2x —e)ye,.

Show that the critical points of this vector field are nodes at (0, 0) and (e, 0).

8.3.3 Singularities of Three-Vector Fields

I conclude this chapter with a few lines on the singularities of vector fields in three-
dimensional Euclidean space. The classification of these singularities is considerably
more complicated than it is for planar vector fields. It is immediately evident that we
could now have both point singularities as well as line singularities. (More accurately,
it is possible to have “wall” singularities as well, just as it is possible to have line
singularities that act as walls in a plane.) The remarks that follow are restricted to
point singularities.
A general vector field can now be written as

u(r) =u(x,y,z)e. +v(x,y,z)e, +w(x,y,z)e;. (8.39)

Critical points correspond to the isolated roots of the simultaneous equations u =
0, v =0, w = 0. Asinthe case of planar vector fields, we may linearize the functions
u, v and w in the vicinity of a critical point, and examine the nature of the field lines
in generic cases. Once again, this is determined by the three eigenvalues of the
Jacobian matrix L of partial derivatives evaluated at the critical point. When all three
eigenvalues are real and positive, the critical point is a source (a node); when they are
all negative, we have a sink (also a node). When only two of the eigenvalues have the
same sign, we have the three-dimensional analog of a saddle point. When there is a
pair of complex conjugate eigenvalues and the third eigenvalue is positive, the critical
point is a saddle focus, and so on. As I have already mentioned, the systematic study
of the singularities (of scalar, vector, and tensor fields and of more general objects) is
a well-developed part of mathematics. The subject also finds numerous applications
in physics—for instance, in fluid dynamics, in classical and quantum field theory, in
the study of defects in condensed matter, in plasma physics, and in astrophysics and
cosmology.

8.4 Solutions

1. Setu(r) = a ¢(r) (where a is a constant vector) in Eq. (8.2). Use a vector identity
for the curl of the product a ¢(r). >

2.(a) Set u(r) = a¢(r) (where a is a constant vector) in Eq.(8.12). Note that if
a-X =a-Y for every vector a, then the vectors X and Y must be equal to each
other. (b) Set u = a x v where a is a constant vector. You need to make the same
argument as in (a) above, when a x X = a x Y for arbitrary a. >
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3.(a) V-V(r?) = V2(r?) is trivially found in Cartesian coordinates to be equal to
6. The result quoted follows at once.

(b) The volume of the toroid is easily found, using a general result for the volume of
a surface of revolution that you would have encountered in an elementary course on
the calculus (the Theorem of Pappus). The torus is a surface of revolution obtained
by taking the cross-sectional circle of radius b with center at a distance a from the
origin, and moving it in a circle of radius a. The volume swept out is, therefore, the
product of the area 7b? and the distance 2ma moved by the center of the circle.

(c) Use the fact that V - (ae’*T) = (ik - a) ¢/*T. You have to evaluate the integral
| v ¢®T dV over the volume of a sphere of radius R centered at the origin. It is there-
fore natural to use spherical polar coordinates for the integration over r. The value
of the integral is a scalar, i.e., it is rotationally invariant. Hence it cannot depend
on the direction of the vector k. The latter can be chosen to lie along the polar or
z-axis—or rather, the polar axis can be chosen to lie along the direction of k. This
greatly simplifies the calculation, because Kk - r now becomes k r cos 6, which is
independent of the azimuthal angle . Hence the integral over ¢ is done trivially,
to get a factor 27r. Carry out the integration over § and r to obtain the result quoted. »

4. Use Poisson’s equation for the electrostatic potential (Eq.(4.31) of Chap.4,
Sect.4.2.6) in reverse, i.e., write p(r) = —ey V24(r), and use Green’s second iden-
tity. The finite extent of the charge distributions p(r) and p’(r) guarantees that the
right-hand side of the identity vanishes in the limit when the volume integral extends
over all space. >

5. Use Green’s first identity, Eq. (8.16). The choice of 7 in each case is obvious.  »

6. Cases (a)—(d) correspond to distinctly different field configurations. Cases (e)—(h)
are, respectively, the same configurations as in (a)—(d), with all arrows on the field
lines reversed in sense.

The vector field (a) is just the two-dimensional position vector r itself. Its field
lines are therefore radial lines emanating from the origin. The Poincaré index n = +1
for (a) and (e).

The field lines in cases (b) and (f) are concentric circles centered at the origin,
directed clockwise and anticlockwise, respectively. n = 41 in both cases.

The field lines in (c) and (g) are rectangular hyperbolas with the coordinate axes as
the asymptotes. Similarly, the field lines in (d) and (h) are also rectangular hyperbolas,
but with the lines y = +x as the asymptotes. n = —1 in all these cases.

Figures. 8.10a—d show the field lines of the vector fields in (a)—(d). >

7. Let& = (x —x) and n = (y — y). You can regard the linear approximation of
Eq.(8.35) as a coordinate transformation from the pair (£, 1) to the pair (u , v). This
is a linear transformation that is orientation-preserving if det L > 0, and orientation-
changing if det L < 0. That is, the right- or left-handedness of the original coordinate
system remains unaltered if det L > 0, and is flipped if det L < 0. When the closed
contour C around the critical point is traversed once in the anticlockwise sense, the
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Fig. 8.10 Field lines of a (a) (b)
vector field in the vicinity of y y
a anode, b a center, c and d
saddle points il
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argument tan~'(1/€) changes by 2. If the transformation to (u, v) is orientation-

preserving [respectively, orientation-changing], the argument tan~!(v/u) changes
by 27 [respectively, —27]. Hence n = 1 [respectively, —1]. >

8. det L is just the product of the two eigenvalues of L. The latter must either be a
pair of real numbers, or a complex conjugate pair. >

9. (b)In cases (i) and (ii), you can linearize the vector field in the vicinity of the
critical point concerned, and take the contour to be a small circle around that point.
In case (iii), you can expand the contour outwards to make it a large circle of radius
R, and take the limit R — oo.

Remark Whena = 0, the two critical points coincide. Note that the contour integral
above remains equal to 0, even though it now encircles just one singularity of the
vector field. >

10. (a) First express the field components in plane polar coordinates.

(b) Introduce the complex variable z = x 4+ iy. It is then evident that # and v are
just the real and imaginary parts of z2 in case (i), and of z* in case (ii). The Poincaré
indices follow immediately: a single circuit around the origin in the z-plane increases
the argument of z by 27, and hence that of z” by 2n.

Remark The critical point in case (i) above may be termed a dipole. As you already
know from electrostatics, a point dipole is obtained as a limiting case of a positive
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Fig. 8.11 Field lines of a
vector field in the vicinity of
a dipole critical point

charge (or source) and a negative charge (or sink), when the separation tends to zero
while the magnitude of the charge tends to infinity, such that the product of the two
remains finite. In the unfolded form, the node at (0, 0) is a sink, while that at (e, 0)
is a source. The coalescence of these points as ¢ — 0 leads to the dipole singularity.
Figure 8.11 illustrates the field lines in the vicinity of a dipole. >



Chapter 9 ®
A Bit of Electromagnetism and Special s
Relativity

In Chap.7, we have seen how vector calculus is useful in fluid dynamics. Let us
now take a brief look at the other major applications of this tool in classical physics,
namely, electromagnetism. I shall assume that you are already familiar with the
elements of this subject. Its physical aspects will, therefore, be mentioned only very
cursorily. The emphasis here will be on seeing how vector calculus provides a natural
language for the description of electromagnetic fields (EM fields, for short). In the
process, I will discuss the important concept of gauge invariance and some relevant
aspects of special relativity, four-vectors, and Lorentz-invariance. But I shall not
explicitly introduce the metric tensor, contravariant and covariant vectors, etc.
Important as these concepts are, they would involve too lengthy a digression.

9.1 Classical Electromagnetism

9.1.1 Maxwell’s Field Equations

We shall use SI units throughout. Recall that Maxwell’s equations for the electric
field E(r, ) and magnetic field B(r, ¢) in free space are

\V-Bzo, (V x E) 4+ 0B/dt = 0,

©.1)

and

\v ‘E=p/ey, (V xB)— poeo OE/Ot = o j. \ 9.2)

Here ¢y and p¢ denote, respectively, the permittivity and permeability of free space.
As you know, the combination (uoeo)‘l/ 2 turns out to be the speed c of electromag-
netic waves in free space. It is very important to bear in mind the following basic
facts regarding these field equations:
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(i) The EM fields are induced by the charge density p (r, ¢) and the current density
j(r, 1). The latter are the sources of the fields, and are supposed to be given quantities.
Maxwell’s equations are valid in general, and not merely for static charges or steady
currents.

(ii) The equations specify the divergence and the curl of the EM fields. These quan-
tities suffice to specify the fields completely, in a form that is independent of any
particular choice of coordinates: recall, at this stage, the discussion in Chap.6,
Sect. 6.2.7 on the significance of specifying the divergence and curl of a vector field.
(iii) The equations are partial differential equations of the first order in the spatial
coordinates as well as the time. This uniformity is related to the fact that the equations
are relativistic in nature: they are invariant under Lorentz transformations, as we shall
see below.

(iv) Together with appropriate initial conditions and boundary conditions, the field
equations determine the EM fields uniquely in any situation, once the sources p and
j are specified.

Writing out Egs. (9.1) and (9.2) in component form, we find that there are actually
eight equations. But the total number of unknowns is just six, namely, the components
of the two vector fields E and B. Does this mean that the equations over-determine
the fields? That would be bad, because when you have more equations than there are
unknowns, there are no nontrivial solutions, in general. But this is not the case with
Maxwell’s equations. The equation of continuity

dp

V.j= .
o TV i=0 (9.3)

relates the sources p and j. The conservation of electric charge follows from the
equation of continuity. Similarly, the fact that the divergence of B vanishes identically
implies that magnetic monopoles do not exist, and is again a statement about the
sources of the EM fields (see the remarks that follow in the next paragraph). The
upshot of these two conditions on the sources is that one has just the right number of
independent equations (namely, six) to determine the fields completely and uniquely,
given appropriate initial and boundary conditions.

A remark on magnetic monopoles is in order here. The existence of magnetic
monopoles would make Maxwell’s equations more symmetrical in E and B. The
right-hand sides of the two equations in (9.1) would then be nonzero. They would be
proportional, respectively, to the magnetic monopole density p,, and the negative of
the magnetic current density jy, . These sources would then be related by the continuity
equation Opp, /0t + V - j,, = 0. It turns out, however, that in nature py, and jy, are
identically equal to zero. (We are not discussing electroweak unification or the early
universe here!)

Before we go on to the analysis of the field equations, there are a couple of
other obvious but noteworthy points. I mention these because they are sometimes
overlooked or misunderstood.
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e The electric field is not a conservative vector field in general, because its curl is
not identically equal to zero.

E becomes a conservative vector field only when there is no time-varying magnetic
field. It can then be expressed as the gradient of a scalar field. Electrostatic fields fall
in this category.

e The magnetic field, too, is not a conservative vector field in general. Its curl is not
zero even if all the currents present are steady currents rather than time-varying
currents.

Therefore, even a static magnetic field cannot be expressed as the gradient of some
scalar field. This is why magnetostatics is a little more involved, mathematically, than
electrostatics: For example, Coulomb’s Law for the electrostatic field due to a static
charge is certainly less complicated than the Biot—Savart Law for a magnetostatic
field due to a steady current.

9.1.2 The Scalar and Vector Potentials

There is a fundamental difference between Egs.(9.1), the first pair of Maxwell’s
equations, on the one hand, and Eqgs. (9.2), the second pair, on the other.

e Equations (9.1) are homogeneous equations. They do not involve the sources p and
j of the EM fields. Hence the information they carry is valid no matter what the
sources are.

e In contrast, Egs. (9.2) are inhomogeneous equations in the fields. They involve the
sources p and j of the EM fields.

Since div B = 0, it follows that B is always expressible as the curl of another vector
field, conventionally denoted by A:

V-B=0 = [B(r.)=VxAr1). 9.4)

A is called the vector potential. The second homogeneous equation then becomes
v E + oA 0 9.5)
X — ) =0. .
Ot

Since the curl of a gradient is identically zero, it follows that the vector in the brackets
in the equation above can always be written as the gradient of a scalar field:

O0A 0
E + e —V¢, or |E(r, 1) = ~ o A(r,t) — Vo(r, t). (9.6)

¢ is called the scalar potential. The minus sign in its definition is a matter of
convention. It ensures that, in the special case of an electrostatic field, ¢ is the
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electrostatic potential, rather than —¢. The homogeneous Maxwell equations thus
yield the convenient representations in Eqs.(9.4) and (9.6) for the magnetic and
electric fields in terms of the vector and scalar potentials. Once these representations
are written down, the content of Egs.(9.1), the homogeneous pair of Maxwell’s
equations, is exhausted.

Inserting these representations for E and B in Egs. (9.2), the inhomogeneous pair
of Maxwell’s equations, we get

Vv ay+vie=-2 ©.7)
ot €0
and d¢ A
1 1
V== +V-A)|+—=— — V?A = 1j. 8
<c2 ot + ) + c? or? Hol ©8)

Equations (9.7) and (9.8) comprise four equations for four quantities (the scalar ¢
and the three components of the vector A).

% 1. What happens to the relationship between p and j implied by the equation of
continuity?

Equations (9.7) and (9.8) are fairly involved equations—in particular, they are cou-
pled equations, rather than separate equations for ¢ and A. To proceed, it is helpful
to simplify them first by using the freedom that is available to us in the choice of the
potentials.

9.1.3 Gauge Invariance and Choice of Gauge

The curl of a gradient is identically zero. Therefore Eq.(9.4) also shows that the
magnetic field B, a physical quantity, does not change if the gradient of an arbitrary
(but differentiable) scalar function x (r, #) is added to the vector potential. The electric
field would change under this modification, but it can be made invariant by subtracting
the partial time derivative of x(r, #) from the scalar potential.

e It is easy to see from Egs.(9.4) and (9.6) that the physical EM fields do not get
affected if the potentials A and ¢ are replaced by A" and ¢’, respectively, where

A'=A+Vy and qs/:gzs—g—’;. (9.9)

These comprise a gauge transformation of the EM potentials. The fact that E
and B remain unaltered is called the gauge invariance of the EM fields.

The arbitrariness in A and ¢ implied by the foregoing is called gauge freedom. The
choice of any specific function y “fixes the gauge”. Maxwell’s field equations are
obviously gauge invariant, because they involve the fields E and B directly, rather
than the potentials.
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e Allphysical or measurable quantities pertaining to the EM fields, such as the energy
of the field, its momentum, angular momentum, and so on, must be expressible
in terms of these fields (rather than the potentials alone), and must therefore be
gauge invariant as well.

This statement implies that the potentials themselves are auxiliary mathematical
quantities rather than physical observables. This is certainly true in classical elec-
trodynamics, but not so in quantum physics. Explaining why would take us too far
afield. I merely mention the following:

e Observable effects such as the Aharonov-Bohm effect confirm the physical nature
of the electromagnetic potentials in quantum mechanics.

But I hasten to add, in order to avoid any misunderstanding, that the gauge invariance
of electromagnetism continues to hold good in quantum mechanics and in quantum
field theory.

Gauge fixing is done by selecting a suitable scalar function x(r, #). Therefore
any particular choice of gauge must involve a single scalar condition or equation
to be satisfied by A, or ¢, or both. In particular, a vector condition will not be
satisfied in general, although it may be possible to satisfy it in particular instances.
For example, in electrostatics, we are concerned with static charges alone, with no
currents present. There is only an electrostatic field, and no magnetic field at all. In
this case it is clearly possible to have a vanishing vector potential at all points and
for all ¢ (i.e., to satisfy the vector equation A = 0). But this is obviously not possible
in more general situations. When a magnetic field is present, A cannot be identically
equal to 0.

In contrast, the condition ¢ = 0 is a scalar condition. Therefore it appears to be
acceptable as a gauge condition. The gauge in which the scalar potential vanishes
identically is called the Weyl gauge. Here is how it can be implemented. Suppose
we are given a scalar potential ¢(r, ¢) that is not identically equal to zero. Then, by
selecting the gauge-fixing function x as a solution of the equation ¢ — 0 /0t = 0,
we have a new scalar potential ¢’ that does vanish identically. Of course we would
simultaneously have to change over from the original vector potential A to the new
vector potential A’ = A 4 V. But this change does not affect the physical fields E
and B.

Among the infinite number of possible scalar conditions for fixing the gauge, a
few stand out as the most useful choices, in practice. Magnetostatics (in which the
sources are restricted to steady currents alone), for instance, is conveniently studied
in the Weyl gauge. Magnetostatics is such a special case that we can set ¢ = 0 and
still have the freedom to choose A appropriately, as will be seen shortly. It is even
possible (but not very sensible!) to do electrostatics without a scalar potential. For
instance, suppose the fields are givenby E = Eye,, B = 0 (where E is a constant).
These fields are easily obtained from the potentials ¢ =0, A = —Eje,t.

Two particular choices of gauge are especially important, and are the ones used
most frequently. They are discussed below.
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9.1.4 The Coulomb Gauge

It is always possible to choose the vector potential such that
V-A=0. (9.10)

This is called the Coulomb gauge. Here is an argument to show how this choice is
always possible. Suppose we are given a vector potential such that V - A is equal
to some (scalar) function f(r, t) that does not vanish identically. The relation A’ =
A + Vy then gives V- A’ = f + V?y. All we need to do to ensure that V- A’ = 0
is to choose  to be a solution of the Poisson equation

V2x(r, 1) = — f(r, 1). 9.11)

This is a well-defined and standard mathematical problem that has a solution under
fairly general conditions. (In Chap.29, we will derive the so-called fundamental
solution of Poisson’s equation.) It follows that we can always make a gauge trans-
formation to a vector potential that is solenoidal.

Even after we impose the requirement that V - A be equal to zero (we may as well
drop the prime), there is still a good deal of arbitrariness in the vector potential A.
You can of course add any constant vector to A. But you can also add Vv, where
1 is any scalar function that satisfies V21 = 0, without changing the physical fields
E and B. The new vector potential thus obtained will continue to remain solenoidal,
so that we are still in the Coulomb gauge. Therefore, when we choose the Coulomb
gauge in any given situation, we are really choosing a family of vector potentials, each
of them a solenoidal vector field, rather than a single unique vector potential. The
boundary conditions on the fields, however, may restrict this freedom considerably.
They may even make the potentials in the Coulomb gauge unique, in some instances.

On setting V - A = 0, Eq.(9.7) for ¢ gets simplified. The vector potential A dis-
appears from this equation, which now reduces to a well-studied equation of math-
ematical physics—namely, Poisson’s equation:

V2, r) = ~ L&D ©9.12)

€0

I have written out the possible 7-dependence of p (and hence that of ¢) explicitly in
this equation, in order to emphasize that it is valid in general, once we choose to work
in the Coulomb gauge. It is not restricted to the case of a static charge distribution,
i.e., it is not restricted to electrostatics alone.

e The great advantage of the Coulomb gauge is that the vector potential is decoupled
from the equation obeyed by the scalar potential. Moreover, the latter is the standard
Poisson equation.

In Eq.(5.57) of Chap.5, Sect.5.3.5, I have already written down the fundamental
solution to Poisson’s equation—the solution that satisfies the “natural” boundary
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condition ¢ = 0 for r — o0. In other words, the potential vanishes at spatial infinity
in all directions. This solution is based on the assumption that the charge distribution
p (the source of the field) is confined to a finite region of space. Moreover, it pertains
to a static charge distribution. But the same formal solution also applies to the time-
dependent case, Eq. (9.12): ¢ is just a parameter (an “idle spectator”, if you like) that
appears on both sides of this equation. The fundamental solution to the equation can
therefore be written down at once. It is

o(r, 1) = —/ d? P (9.13)

Ir—r’l

ButEq. (9.13) implies that, if the charge distribution at any point r ’ changes with time,
the scalar potential ¢(r, t) at any other point r changes instantaneously, no matter
how far apart r’ and r are. Hence —V ¢ also changes instantaneously. Does this mean
that the electric field E, a physical measurable, also changes instantaneously? Not at
all. The field cannot change instantaneously. That would violate the limitation posed
by special relativity—namely, that no signal can propagate at a speed greater than c.
The other term in E, namely, —OA /0t, must therefore exhibit such a time dependence
that any violation of special relativity is canceled out in the sum —0A /0t — V¢ = E.
Incidentally, this point also serves as a reminder that it is the electric field that is the
physical quantity, while the potentials are auxiliary quantities (at the classical level,
at any rate).

Once the solution to the Poisson equation (9.12) is obtained, we may substitute it
in Eq. (9.8) for the vector potential, and move the corresponding term to the right-
hand side of that equation. The equation for the vector potential in the Coulomb
gauge then becomes

———V2A=u0j—C—V—. (9.14)

The right-hand side comprises known quantities, and acts as a source term for A.
Equation (9.14) is again a standard equation of mathematical physics, the inhomo-
geneous wave equation. The solutions of this equation are also well-studied. (We
will discuss the fundamental solution of the wave equation in Chap.31.) Once ¢ and
A are known, the fields E and B are easily computed.

e In principle, therefore, the Coulomb gauge reduces the complete solution of
Maxwell’s equations to the solution of Poisson’s equation for ¢ and the inho-
mogeneous wave equation for A.

9.1.5 Electrostatics

In the special case of electrostatics, we are concerned with a single static field E(r)
that satisfies the restricted field equations
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V-E(r) = @ and V x E(r) =0. (9.15)

€0

The source of the field is a static charge density p(r). Since E(r) is an irrotational

vector field in this case, it follows at once that we can write E(r) = —V¢(r), where
V26 () = 2O (9.16)
€0
Thus,

e any problem in electrostatics can be reduced to the solution of Poisson’s equation
with appropriate boundary conditions.

Recall that the solution for ¢(r) in the simple case of natural boundary conditions,
lim ¢ = 0, has already been written down in Eq. (5.57) of Chap. 5, Sect. 5.3.5. Taking

F—>00
the gradient with respect to r on both sides of this equation, the solution for E is

Er) = , (9.17)

/d3r' p)(—r")

r—r/'f?

4eg

as expected. In other cases, the boundary conditions lead to more intricate solu-
tions. Any complexity in electrostatics arises essentially because of the boundary
conditions.

9.1.6 Magnetostatics

In magnetostatics, too, there is no time dependence, and we are concerned with the
special case of a single static vector field B(r). The restricted field equations in this
case are

V:B(r)=0 and V x B(r) = pj(r). (9.18)

The source of the field is a steady current density j(r). Since B is a solenoidal vector
field, it follows at once that B(r) = V x A(r). Now use the standard identity for
V x (V x A), and work in the Coulomb gauge, so that V - A = 0. We then have

VZA(r) = — o j(r). (9.19)

But this is just Poisson’s equation once again, this time for a vector field rather than a
scalar field. Each Cartesian component of j acts as the source for the corresponding
component of A. As before, if the current density is confined to a finite region of
space, and we assume natural boundary conditions (A vanishes at spatial infinity in
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all directions), the solution can be written down exactly as in the case of the scalar
potential in electrostatics. Thus

A(r) = Z—O/d%/L/),. (9.20)
T [r—1’|

It remains to find the magnetic field B(r) = V x A(r). The result is

B(r):@/d3r/w.

47 r—r’3 ©-21)

This is the general form of the Biot-Savart Law for the magnetostatic field due to
a steady current density.

% 2. Derive Eq.(9.21) from (9.20).

In the special case of a line (a thin wire) carrying a steady current I, we have
d*r’j(x’) — Ide, where d{ is the line element along the wire. The Biot—Savart
Law then reduces to the familiar form that we learn in high school:

_MOI/dEXR

B(r) , (9.22)

47 R3

where the integral is along the length of the wire, and R is the vector from the line
element d{ to the field point r.

9.1.7 The Lorenz Gauge

Let us return to the general Eqgs. (9.7) and (9.8) for the scalar and vector potentials.
You have seen that the choice of the Coulomb gauge condition V - A = 0 eliminates
A from Eq. (9.7), and reduces it to Poisson’s equation for ¢. Similarly, the condition

1 96
— 2 4v.A=0 23
2o " ©-23)

decouples ¢ from Eq. (9.8), and reduces it to the inhomogeneous wave equation for
A (Eq.(9.24) below). A choice of potentials such that Eq. (9.23) is satisfied is called
the Lorenz gauge.

% 3.Use an argument similar to that given in the case of the Coulomb gauge to show
that the Lorenz gauge can always be implemented.

Once again, when we choose the Lorenz gauge, what we really have is a
whole family of potentials, all of which satisfy Eq.(9.23). They differ from each
other by gauge functions v that are solutions of the homogeneous wave equa-
tion (1/¢?) (0%1)/0t?) — V*4) = 0. These could be nontrivial functions, so that the
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different potentials obtained could look quite different from each other—and yet lead
to the same EM fields.

The vector potential in the Lorenz gauge satisfies the wave equation with the
current density as the source:

1 92A .
557 VA = poj. (9.24)

Further, using the relation V - A = —(1/c?) (9¢/0t) in Eq.(9.7), we get

19°¢ P
S~ V= 2. (9.25)

Thus, in the Lorenz gauge, the scalar potential also satisfies the wave equation, with
the charge density as the source.

e In principle, therefore, the Lorenz gauge reduces the complete solution of
Maxwell’s equations to the solution of inhomogeneous wave equations for both ¢
and A.

This is not a coincidence! Rather, it is the consequence of a deeper symmetry of
the electromagnetic field equations, which I will discuss in Sect.9.3 below. This
symmetry, or relativistic invariance, is a fundamental reason why the Lorenz gauge
is of special interest.

Let us go back, for a moment, to the Coulomb gauge condition V - A = 0. The
left-hand side of this equation is a scalar, which means that it is unchanged under
rotations of the coordinate axes. Suppose the Coulomb gauge is chosen in a given
frame of reference. Now transform to a new frame of reference whose coordinate axes
are rotated with respect to the original axes. It is then guaranteed that we continue
to remain in the Coulomb gauge. This is clearly a convenient property. However, if
we transform to a new frame of reference that is moving at a uniform velocity with
respect to the original frame, this is no longer true. This is because V - A is not a
scalar under such “velocity transformations” (or boosts). We have to make another
gauge transformation in the moving frame to get back into the Coulomb gauge; and
this can always be done, of course.

In contrast to this situation, the combination (1/c?)(0¢/0t) + V - A turns out to
be unchanged under rotations of the coordinate axes as well as boosts to uniformly
moving frames of reference—i.e., under the full set of Lorentz transformations.
Hence this combination it is not only an “ordinary” scalar, but also a Lorentz scalar.
Therefore the condition (1/¢?)(0¢/0t) + V - A = 0, if satisfied in a given frame of
reference, remains satisfied in all frames that are inertial with respect to the original
frame. In other words,

e the Lorenz gauge condition is Lorentz-invariant.!

IThe Lorenz gauge is named after the Danish mathematician and physicist, L. V. Lorenz (1829
1891). Lorentz transformations are named after the Dutch physicist H. A. Lorentz (1853-1928).
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This property of relativistic invariance or Lorentz-invariance of the Lorenz gauge
condition makes it very useful in dealing with electromagnetic radiation phenomena
and relativistic electrodynamics, as well as quantum electrodynamics and quantum
field theory.

This brings us to a consideration of the properties of the EM fields and the Maxwell
equations under Lorentz transformations. A brief digression into special relativity
helps set the stage. Once again, I assume that you are familiar with the elements of
the subject. What follows is merely a quick recapitulation of some salient features,
and not a detailed account of special relativity. As already stated at the beginning of
this chapter, I shall not explicitly use the metric tensor, contravariant and covariant
vectors, etc., owing to limitations of space.

9.2 Special Relativity

9.2.1 The Principle and the Postulate of Relativity

Special Relativity is based, as you know, on (i) a general principle and (ii) a physical
postulate.

e The Principle of Relativity says that the laws of physical phenomena are
unchanged in form (form-invariant) for all mutually inertial observers, i.e., in
all frames of reference related to each other by Lorentz transformations.

The term Lorentz transformation is often used in elementary discussions to mean
just a transformation to a frame of reference moving uniformly with respect to the
original frame. This is sometimes called a velocity transformation, the technical
term being a boost. Lorentz transformations actually comprise all possible rotations
of the spatial axes as well as boosts in all possible directions. More precisely: these
constitute the set of homogeneous, proper Lorentz transformations, the so-called
special Lorentz transformations. Such transformations comprise the Lorentz group,
denoted by SO (3, 1). Inhomogeneous Lorentz transformations also includes shifts of
the origin of the spacetime coordinates by constant amounts. Inhomogeneous Lorentz
transformations also form a group, called the inhomogeneous Lorentz group or the
Poincaré group. The principle of relativity stated above applies to this extended set
of transformations. But we will not consider these here. There are also improper
transformations such as parity and time reversal.

e The Postulate of Relativity says that there exists a fundamental limiting speed in
nature, that is the same in all mutually inertial frames of reference.

Light propagates in a vacuum with this limiting speed, denoted by c. So does any
particle whose rest mass happens to be exactly zero.

The question arises as to what happens in different sets of mutually inertial frames
of reference, which may be accelerating with respect to each other. Without going
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into details, I merely mention that, strictly speaking, the principle of (special) rel-
ativity stated above is only valid in “flat” spacetime, i.e., spacetime in the absence
of any curvature or gravitational fields. Gravitation enters the picture because of the
Principle of Equivalence, which says, broadly speaking, that any acceleration is
locally equivalent to the effect of an appropriate gravitational field. The latter, in
turn, is a manifestation of the curvature of spacetime. There is a specific criterion to
determine whether any given region of spacetime is flat or not. It takes fairly intense
gravitational fields to produce significant curvature in a region of spacetime, so that
the latter may be taken to be flat to a good approximation even in the presence of
mild gravitational fields. This is why special relativity, rather than general relativity,
suffices to handle all situations except those involving the effects very high gravita-
tional fields, such as gravitational waves. But the validity of this simplification is of
course contingent upon the level of accuracy desired in any given situation.

9.2.2 Boost Formulas

Consider a frame of reference S, and another frame of reference S’ moving at a
uniform velocity v with respect to it (Fig.9.1). Let (r, ¢) and (r’, t ') be the respective
spacetime coordinates in S and S’. We assume (for simplicity) that the origins and
the Cartesian axes of the two frames coincide at # = 0. You are no doubt familiar with
the Lorentz transformation formulas (or boost formulas) in the special case when
v = ve,. Let us be a little different, and write down the transformation rules for a
boost velocity v in any arbitrary direction.

Resolve the coordinate vector r (in S) into components along v and transverse to
it. (Recall, if necessary, Eq. (5.22) of Chap. 5, Sect.5.1.4.) That is,

r-v r-v
r=r“+rl=7v+(r—7v>. (9.26)

Fig. 9.1 Mutually inertial ol
frames S and S’

x!
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The transverse component r is not affected by the boost, as you might expect. The
longitudinal component undergoes the familiar transformation. Let

v & 11 = (v/o)2. (9.27)

Then the Lorentz transformation formulas corresponding to the boost are

(9.28)
r'= (rv'—zvv—vt>+(r— rv_zvv>

In three-dimensional Euclidean space, the square of the distance to any point, r> =
X; X;, is preserved under rotations of the coordinate axes about the origin. In the
same way, what is preserved under Lorentz transformations is the square of the
interval from the origin to any point in spacetime, defined to be ¢* > — r2. The
surface r> = constant is a sphere in space. The hypersurface ¢?t> — r> = constant
is a hyperboloid in spacetime.

% 4.Given Eqs. (9.28), verify that c?t'?> — r’? = 212 — r2.

9.2.3 Collinear Boosts: Velocity Addition Rule

The familiar special case is the one in which the frame S’ moves with a velocity
v = v e, along the x-axis of S. The formulas in Egs. (9.28) then reduce to the familiar
ones for the spacetime coordinates in S’, namely,

ct’zfyv(ct—ﬂ),x’:»yv(x—vt), y’:y,z’:z. (9.29)
C

Now suppose a third frame of reference S” is moving at a uniform velocity u e,
with respect to S’ (Fig.9.2). The spacetime coordinates in this frame are therefore
given by

x'u
ct” =7, (ct’— ) = —ut’), v =y =2 (9.30)
C

where v, = 1/4/1 — (u/c)?. Putting in the expressions for the primed variables from
Eq.(9.29), we find that the spacetime coordinates in S” are related to those of the
original frame S by a single boost w e,, according to

w
ct” =, (ct——x ), x"=vy(x—wt), y'=y, 7" =z, (9.31)
¢
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Fig. 9.2 Three collinearly moving frames

where v, = 1/4/1 — (w/c)?, and

v+u

As you know, the striking difference between the nonrelativistic and relativistic
situations is the change in the rule for the addition of velocities implied by the
expression for w in Eq. (9.32).

% 5. Verify Egs.(9.31) and (9.32).
The foregoing establishes an important result:

e The resultant of two successive boosts in the same direction is again a boost in the
same direction.

e The resultant boost is nonlinear in the individual boosts, and explicitly involves
the fundamental velocity c.

And now for a surprise: This conclusion does not hold good if the two boosts are in
different directions! Instead, this is what happens:

e Two successive boosts in different directions are equivalent to a single boost
together with a rotation.

Why is it that two boost velocity vectors v and u do not just add up to produce a
resultant boost velocity (v 4+ u), modulated by some “correction factor” involving
¢, as in Eq.(9.32)? A physical way of understanding the reason why is as follows.
The second equation in (9.28), the formula for r’, indicates the way in which the
components of any three-vector transform under a boost. It shows that the component
of the vector along the direction of the boost, and the part normal to the boost,
transform in different ways. Now, when a boost v is followed by a boost u, the latter
acts on not only the original coordinate r, but also on the original boost velocity
vector v, because r’ involves both r and v. The part of v that is directed along u and
the part that is normal to u get transformed in different ways. This produces a kind
of “twist”, whose effect shows up as a roration of the axes.
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This rotation is called a Wigner rotation. It is responsible for the phenomenon of
Thomas precession. An important consequence of the foregoing is that, while the
set of all possible rotations constitutes a subgroup of the group of Lorentz transfor-
mations, the set of all possible boosts does not.

9.2.4 Rapidity

As I have just stated, a second boost u transforms not only the original coordinate
vector r, but also the first boost velocity vector v. But this is true, of course, even
when u is along the same direction as v. The effective resultant of the velocities
ve, and u e, is w e,, where w is given by Eq. (9.32). Here v and u lie in the range
(—c, o).

The velocity addition rule can also be interpreted as follows. A physical object
at rest in the frame S” moves with a velocity u e, in the frame S’, which is itself
moving with a velocity v e, with respect to a frame S. Then the velocity of this object
as measured in S is w e,, where w is given by Eq.(9.32).

e The existence of a limiting velocity ¢ necessarily makes the law of addition of
velocities nonlinear in the individual velocities.

Note that |w| — ¢ as |u| — ¢, consistent with the postulate of relativity. For all
|v] < cand |u| < ¢, we have |w| < ¢ as well, as expected.

The moving object could be light itself, in a fluid medium of refractive index p.
Then u = ¢/, which is less than c. Let the fluid move with velocity v with respect
to the lab frame in the same direction as the light beam. Then, using Eq. (9.32), the
speed of light as measured in the lab frame is given by

w =c<’:;’j:z) (9.33)

This is precisely the result that is exploited in Fizeau’s interferometer, used in the
measurement of the speed of light in a moving medium. In practice, the fluid velocity
v is generally much smaller than c. To first order in v/c, Eq.(9.33) reduces to

c 1
wx~ —+ (1 — —2> v. (9.34)
w K

In his experiment, Fizeau used this expression for w, which was at that time derived
on the basis of the erroneous, pre-relativity assumption that light was “dragged” by
a moving medium. But we know now that (fortunately!) it coincides with the correct
answer to leading order in v/c.

Although the formula for the resultant velocity w in Eq.(9.32) is a nonlinear
function of v and u, there does exist a specific function of the speed, in terms of which
the composition law for collinear velocities becomes simple algebraic addition. This
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quantity is the rapidity corresponding to the one-dimensional velocity v, defined as

def.

gvz

tanh ! (v/c). (9.35)

Equation (9.32) then reduces to

036

In other words:
e When the velocities are collinear, rapidities, rather than velocities, add up.

For v <« ¢, the rapidity &, >~ v/c to leading order. As v — ¢, &, — 00. Observe
also that the quantities -, and &, are related according to

v =1/v/1— (v/c)? =cosh &, . (9.37)

The utility of the rapidity variable will become clear when the transformation matrix
corresponding to a boost is written down in Sect.9.2.6 (see Eq. (9.47) below).

Finally, for completeness, I mention that the rule for the addition of noncollinear
velocities is somewhat more complicated than the one for collinear velocities. The
rule is non-commutative, in the sense that the answers are different if the roles of v
and u are interchanged in the foregoing. And when more than two velocities are to
be “added”, the rule is non-associative as well.

9.2.5 Lorentz Scalars and Four-Vectors

The spacetime coordinates (ct, r) form a four-vector, which will be denoted by
X. Analogous to the case of three-vectors in Euclidean space, any other set of four
quantities comprises a four-vector a if it transforms, under Lorentz transformations,
exactly as x does. The first component of a is the time-like component of the four-
vector, while the Cartesian components of a are its space-like components. If £
and p denote, respectively, the energy and linear momentum of a particle, then p =
(E/c, p) is the four-momentum of the particle. Obviously, all the four components
of a four-vector must have the same physical dimensions. This is achieved with the
help of a suitable factor involving the fundamental constant ¢ (as in the case of ct or
E /c, for example). Of immediate relevance to us here are the four-vector current
density j and the four-vector potential A, defined respectively as

i=(cp.J) and A=(@/c, A (9.38)

As already stated in Sect.9.1.7, a Lorentz scalar is a quantity that remains invariant
under Lorentz transformations. A crucial feature of special relativity is incorporated
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in the way the scalar product of two four-vectors a and b is defined so as to produce
a Lorentz scalar. Recall that the square of the interval from the origin to any point in
spacetime, 22 —r2is preserved under Lorentz transformations. This means that
the scalar product of x = (ct, r) with itself must be defined as

X-X et 222, (9.39)

Similarly, the “square” of the four-momentum of a particle must be a Lorentz scalar.
For a free particle, it is given by

p-p=(E*/c*) — p* =m>?, (9.40)

where the constant m is the rest mass of the particle. For physical particles, m > 0.
The relative minus sign between the squares of the time-like and space-like compo-
nents is all-important. More generally, the scalar product of any two four-vectors is
defined as the product of their time-like components minus the ordinary dot product
of the three-vectors representing their space components. This minus sign emerges
automatically when we define an appropriate metric tensor, and introduce contravari-
ant and covariant indices.
The four-dimensional gradient operator is defined as

def. 10
2 (-=,-v). 41
9 (Cat, ) 9.41)

The minus sign in the space-like components in the definition above ensures that the
four-dimensional divergence (or four-divergence) of x is correctly given by

1
Q~5=—gct—(—V~r)=l+3=4, (9.42)
c Ot

the dimensionality of spacetime. The equation of continuity is, in this notation,
Op/ot+V - -j=0-]=0. (9.43)

Hence

e the equation of continuity is the statement that the four-divergence of the four-
current density is zero.

But 0 -] is a Lorentz scalar, so that it remains equal to zero in all mutually inertial
frames of reference. This is as it should be, because the physical content of the
equation of continuity—namely, the conservation of electric charge—is expected
to remain valid for all mutually inertial observers.

We have seen that we can construct, from the del operator V, the Laplacian
operator V - V = V? that is a scalar under rotations of the coordinate axes. The
relativistic analog of the Laplacian operator V? is the d’Alembertian
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def. 10 2 2
D=é?@=§53—v' (9.44)

The d’ Alembertian, also called the box operator or the wave operator, is (by con-
struction) a Lorentz scalar.

9.2.6 Matrices Representing Lorentz Transformations

In Eq.(5.2) of Chap.5, Sect.5.1.2, we have written down the (3 x 3) orthogonal
matrix R(«) that represents a rotation in the xy-plane through an angle «, in three-
dimensional space. It was also established that a general proper rotation is repre-
sented by an orthogonal (3 x 3) matrix with unit determinant (and real elements).
Such matrices comprise the proper rotation group in three dimensions, the special
orthogonal group SO (3).

What is the analogous representation of a proper Lorentz transformation in
(3 + 1)-dimensional spacetime, if we write the spacetime coordinate x in the form of
a (4 x 1) column vector with elements (ct, x, v, z)? Under a Lorentz transformation,

x> x'=Ax, (9.45)

where A is the (4 x 4) matrix representing the transformation. Recall that Lorentz
transformations comprise rotations of the spatial coordinate axes as well as boosts.
The former are easy to represent, as spatial rotations do not affect the time coordinate
at all. Hence a rotation is represented simply by a (4 x 4) matrix of the form

10 0 O
0 Ri1 Ri2 Ry3
0 Ryt Ry Rz |’
0 R31 R32 R33

A (for a rotation of the spatial axes) = (9.46)

where R;; is the (ij)th matrix element of a (3 x 3) rotation matrix R. (That is, R is
an orthogonal matrix with unit determinant.) A boost, however, mixes up the spatial
and time coordinates. Consider, for definiteness, a boost from a frame S to a frame
S’ moving with a velocity v = v e, along the x-axis of S. The spacetime coordinates
in the two frames are related by the transformation formulas (9.29). These relations
may be written in a very convenient form using the rapidity variable £, corresponding
to the boost. We note that cosh £, = +,, as already pointed out in Eq.(9.37), and
therefore sinh &, = (v/c) 7,. Then the transformed spacetime coordinate x’ in S’
corresponding to the spacetime coordinate x in S is given by x’ = A x, where



9.2 Special Relativity 155

cosh &, —sinh &, 00

. L —sinh &, cosh &, 00
A (for a boost in the x-direction) = 0 0 1ol 9.47)

0 0 01

Observe the rough similarity with the matrix R(«). Instead of of the cosine and sine
of «, we now have hyperbolic cosine and hyperbolic sine of ¢,. Unlike R, however,
the matrix A is not an orthogonal matrix. Recall that the orthogonality of a rotation
matrix follows from the fact that ’2 = r2. Under a Lorentz transformation, however,
we have the more general requirement ¢?¢'? — r'? = ¢?t*> — r2. This requirement
imposes a condition on every Lorentz transformation matrix. Define the “metric

matrix”
0

0
0

—_—

g < diag(1, -1, —1,-1) = (9.48)

SO O =
—
o O O

0 —
0 0 -1

It can then be shown that any general Lorentz transformation matrix A obeys the
following pseudo-orthogonality condition

Equating the corresponding determinants, it follows that (det A)? = 1, so that
det A = £1. (9.50)

Asin the case of rotations, transformations with det A = 1 comprise the set of proper
Lorentz transformations. These form a group, the special pseudo-orthogonal group
SO(3, 1). It also follows from Eq. (9.49) that

AT=gA7lg, A'=gATg, and AgAT =y. 9.51)

% 6. The pseudo-orthogonality condition (9.49) and several relations that follow
from it are established quite easily.

(a) Show that the Lorentz-invariance of ¢* 1> — r? implies that the transformation
matrix A satisfies Eq.(9.49).

(b) Establish the relations in (9.51).

(c) Show that the Lorentz transformations (equivalently, the corresponding trans-
formation matrices) form a group.

(d) Show that the matrix A corresponding to a rotation of the coordinate axes,
Eq. (9.46), also satisfies the pseudo-orthogonality condition (9.49).
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9.3 Relativistic Invariance of Electromagnetism

9.3.1 Covariant Form of the Field Equations

The Lorenz gauge condition is now seen to take on a very compact form in terms of
four-vectors. We have
l@ V-A=0-A=0 (9.52)
c? Ot + S =T ’
In other words, the Lorenz gauge condition is just the requirement that the four-
divergence of the four-vector potential be zero. The analogy with the Coulomb gauge
V - A = 0 is now obvious.

e The Lorenz gauge is the relativistic generalization of the Coulomb gauge.

The great advantage of the Lorenz gauge is that it remains unchanged under Lorentz
transformations, as I have already emphasized. This is now obvious by inspection,
because 0 - A is a Lorentz scalar. Many other Lorentz-invariant gauges are possible,
of course: for instance, the gauge in whichx - A = 0.

In the Lorenz gauge, the vector and scalar potentials of EM satisfy the wave
equations (9.24) and (9.25), respectively. Since (¢/c, A) and (cp, j) are in fact four-
vectors, these equations may be combined into the single compact equation

A =], with the gauge condition 9-A = 0. (9.53)

Thus Maxwell’s equations in free space are reduced to the wave equation for the
four-vector potential in the Lorenz gauge. Both the gauge condition (9.52) and the
wave equation (9.53) are manifestly covariant, i.e., they are form-invariant under
Lorentz transformations.

But this is still an indirect way of exhibiting the relativistic invariance of elec-
tromagnetism. The physical electric and magnetic fields E and B are themselves
just three-vectors. Moreover, the equations connecting them to the scalar and vec-
tor potentials do not appear to be Lorentz-covariant (although they are, as you will
see shortly). How does one reconcile these facts with Lorentz-invariance? This task
requires the introduction of the electromagnetic field tensor.

9.3.2 The Electromagnetic Field Tensor

Although the relations B =V x A and E = —9A /0t — V¢ do not at all appear to
be form-invariant under Lorentz transformations, this is not so. The relation between
the fields and the four-vector potential is indeed Lorentz-covariant. In order to write it
down, however, we need to introduce the metric tensor, and extend the index notation
appropriately. As stated at the beginning of this chapter, I shall not do so here. Instead,
I will state the relevant facts in words.
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Taken together, the electric and magnetic fields have six Cartesian components.
Hence they cannot represent either a Lorentz scalar or a four-vector. What about
tensors of higher order? In four dimensions, the number of components of a tensor
of rank 2 is 4% = 16. But this is reduced to six independent components if the tensor
is an antisymmetric one. Now consider the relation B = V x A. The components
of the magnetic field, 8; A; — 0; A, already suggest an antisymmetric tensor. And
they are, indeed, the space—space components of an antisymmetric tensor in (3 + 1)-
dimensional spacetime—the four-dimensional analog of the curl of the four-vector
A. The electric field E = —0A /0t — V¢ appears to be of a different form altogether,
but this is not so. Recall that (1/¢)(9/0t) and ¢/c are the time-like components of
the four-vectors 9 and A, respectively. It is then easy to see that the components
of E, too, are the time—space components of this four-dimensional curl. This tensor
is called the electromagnetic field tensor. Written in matrix form (with a certain
choice of the metric for the spacetime coordinates), it looks like this:

0 —E;/c—-E,/c —E;/c
Ei/c O -B, B,
E,/c B 0 —B;
E./c —B, B 0

(9.54)

In other words, the electric and magnetic fields fogether comprise an antisymmet-
ric tensor of rank 2, in a spacetime of (3 + 1) dimensions. This tensor has defi-
nite transformation properties under Lorentz transformations (see Eq. (9.58) below).
Maxwell’s equations, too, can be written in a manifestly covariant form in terms of
the EM field tensor and the four-current j.

9.3.3 Transformation Properties of E and B

What is of immediate interest to us is the way E and B change under Lorentz trans-
formations. We already know what they do under rotations of the coordinate axes,
of course. Since E and B are three-vectors, they transform exactly like the spatial
coordinate r does under proper rotations of the axes. In particular, the components
of E do not get mixed up with those of B, and vice versa. Under a boost, however, we
may immediately expect such a mix-up to happen. As you know, a moving charge
(i.e., a current) generates a magnetic field, and a static charge will look like a moving
charge to an observer who is moving with respect to it. The fact that E and B are
actually components of the same field tensor also shows that they will get mixed up
when we boost from one inertial frame to another.

I now write down (without proof) the transformation rules for E and B under a
boost from a frame S to a frame S’, which is moving with an arbitrary velocity v
(v < ¢) withrespect to S. As usual, unprimed and primed quantities denote variables
in S and S’, respectively. Further, let the subscripts || and L denote components
respectively along the direction of the boost v and perpendicular to it. Then:
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E|\=Ey, E|={E +(xBy)} (9.55)
and
’ (VXE )

Here v, = 1/4/1 — (v/c)?, as usual. Several noteworthy points follow from these
relations.

e The components of the EM fields along the direction of the boost are unaffected
by the boost.

e It is the transverse components E; and B, that get mixed up with each other as a
consequence of the boost.

e For sufficiently small boosts, such that v?/c? (note the square) is negligible com-
pared to unity, we have

(vx E)
-

E'~E+(vxB) and B'~B — (9.57)

c

e In hindsight, these relations suggest how the Lorentz force on a moving charge
arises—or, from another point of view, how the magnetic field itself is a natural
consequence of charges in motion!

Although the Lorentz transformation rules for the EM fields have been simply
written down in the foregoing, they can in fact be guessed by extrapolating from the
transformation rule for a second-rank tensor 7 in three-dimensional space, under
a rotation R of the coordinate axes. Recall that this rule has been written down in
Chap. 5, Sect.5.1.2. We need here the first of Egs.(5.7), which implies that T’ =
R T RT.1tis not surprising, then, that the transformation rule for the EM field tensor
F under Lorentz transformations is precisely

9.58)

In the earlier instance, T’ = R T RT could also be written as 7' = RT R~! (as in
Eq.(5.8)), because RT = R~!. It is important to note that we cannot do this in the
present instance, because AT * AL

% 7. Apply the transformation rule (9.58) to the case of a boost in the x-direction,
for which A is given by Eq.(9.47), to find the transformed field tensor F’. Hence
deduce that, under such a boost,

E/=E,, E/=v(E,—vB.), E!=7(E.+vB,)

X
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and
B =B, B =~ (By+252) B =~ (B -5
x = Dx y = Mo y 2 s 2=V z 2 .

These expressions are evidently consistent with the general formulas in Egs. (9.55)
and (9.56).

9.3.4 Lorentz Invariants of the Electromagnetic Field

The combination (E? — ¢? B?) is obviously a scalar under rotations of the coordinate
axes. It turns out that it is also invariant under boosts, so that it is actually a Lorentz
scalar. This quantity (apart from a constant factor) is the Lagrangian density of the
electromagnetic field. Similarly, the quantity E - B is a scalar under proper rotations,
and changes sign under the parity transformation. (Recall that E is a polar vector,
while B is an axial vector.) Hence (E - B)? is a scalar under all rotations, proper and
improper. It turns out to be invariant under boosts as well. That is,

E>—*B>’=E'?—-¢*B'?, (E-B)?=(E’-B")>. (9.59)

These two quantities are the only two independent Lorentz scalars that can be formed
from the EM fields. They are called the invariants of the electromagnetic field.

% 8.Using the transformation formulas (9.55) and (9.56), verify Eqgs. (9.59).

An interesting consequence of the Lorentz-invariance of (E - B)? is as follows. If
E - B = 0 in one frame of reference, it remains so for all frames obtained from it by
Lorentz transformations.

e As aresult, transverse electromagnetic waves remain transverse electromagnetic
waves for all mutually inertial observers. That is, light remains light in all inertial
frames.

This is only to be expected, given the postulate of relativity that we started out with!

More generally, since E-B =E’-B’,wehave EB cos § = E'B’ cos ', where
0 and 0 are the angles between the electric and magnetic fields in the frame S and
the boosted frame S, respectively. It follows immediately that cos # and cos #’ must
have the same sign. That is, if E and B make an acute (respectively, right and obtuse)
angle with each other in a given frame, they continue to make such an angle in any
Lorentz-transformed frame.

% 9.Let E and B be constant, uniform fields making an arbitrary acute angle 6 with
each other, in a frame of reference S.

(a) Show thatitis always possible to find a boosted frame S’ such that E’ is parallel
toB'.
(b) Find an expression for the boost velocity required to go from S to S’.
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9.3.5 Energy Density and the Poynting Vector

The energy density of the EM field is given by
W =1 (E* 4 ¢°B?). (9.60)

W is not a Lorentz scalar, in contrast to the Lagrangian density of the EM field. The
energy flux density of the EM field (i.e., the amount of energy crossing unit area per
unit time) is given by the Poynting vector

S = i (E x B). 9.61)
Ho

In view of their physical meanings, we may expect W and S to be related by a
continuity equation. This equation is

ow
—+V.-S=—(E:)). (9.62)
ot
% 10.From Maxwell’s equations and the definitions of W and S, show that
Eq.(9.62) is satisfied.

The right-hand side of Eq. (9.62) is just the rate of Ohmic dissipation, as you might
expect. In the absence of sources (p = 0, j = 0), i.e., for a pure radiation field, the
quantity OW /0t + V - S = 0 in all mutually inertial frames of reference.

The central role of gauge invariance in fundamental physics: A final remark is in
order. In the very brief recapitulation of the elementary aspects of gauge invariance
given in the foregoing, I have not gone into several aspects of gauge transformations
that play a central role in modern physics. These include singular gauges, gauge
transformations in quantum mechanics and quantum field theory, non-abelian gauges,
gauge fields and non-integrable phases, and the natural relationship between gauge
fields and fiber bundles. Arguably, the single most striking discovery of physics itself,
to date, is the following. It is so fundamental that it merits being written in boldface!

e Local gauge invariance underlies the profound connection between gauge
fields and the fundamental forces of nature.

9.4 Solutions

1. Treating (9.7) and (9.8) as equations for p and j for a moment, verify that the
equation of continuity, dp/0t + V - j = 0, is automatically satisfied. >

2. Use the identity given in Chap. 6, Sect.6.2.8 for the curl of the product of a scalar
and a vector, namely, V x (¢u) = ¢ (V x u) + (V ¢) x u. Remember that the curl
involves derivatives with respect to the components of r (and not r”). >
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3. Suppose the left-hand side of Eq. (9.23) is not zero, but some function g(r, t) # 0.
Make a gauge transformation, choosing the gauge function x(r, ¢) to be a solution
of the equation

1 9*x

— = -V’ =g

c? or? X=9

This is again a standard equation, the inhomogeneous wave equation. >

6. (a) You have merely to note that, if x is written as a (4 x 1) column vector with
elements (ct, x, y, z), then

Hence, if X’ = A x, we have
At —r?=xTgx'=Ax"TgAx) =x"(ATgA)x.

Since this is required to be equal to xT g x for all x, we must have AT g A = g.

(b) Use the fact that g> = I, so that g~' = g. The relations concerned follow in a
straightforward manner.

(c) The set of transformation matrices includes the identity matrix, and each A has
an inverse. Further, if A; and A, are Lorentz transformation matrices,

(A1 A)Tg(AA) =AM AT gA A=A gAr =g.

Hence A A; also represents a Lorentz transformation.
(d) Use the fact that R itself satisfies the condition RT R = I. >

9.(a) Let E denote the magnitude of E, and similarly for the other vectors. Using
the fact that E - B and E*> — ¢? B? are Lorentz-invariant, the following simultaneous
equations must be satisfied in a frame in which E’ is parallel to B':

E'B'=EBcosf, E'>—c¢*B'?>=E*— B>

For any value of # such that 0 < cos 6 < 1, these equations yield positive definite
solutions for E’ and B’, given by

12
E' = (1/42) {Ez —c?B? + (E* + 2¢*E*B? cos 20 +C4B4)1/2} .
B’ = (EBcos 0)/E’.

Hence such a frame definitely exists.

(b) In order to find the boost required, the argument goes as follows. The frame S’ (in
which E’ is parallel to B’) certainly cannot be unique, by the following reasoning.
Suppose we find any one such frame. Then the fields will not change in any frame
boosted with respect to it along the (common) direction of E’ and B’. Hence they
will remain parallel to each other in all these other frames as well.
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Let us now try to find a boost v that is normal to both E and B, i.e., it is parallel
(or antiparallel) to E x B. Since there is no B) or E| in this case, the transformation
laws (9.55) and (9.56) for the fields read, in this case,

(vxE)}.

E' =7, [E+ (vxB)), B’:'yU{B— -

But we musthave E’ x B’ = 0, since these fields are parallel to each other. Imposing
this condition and simplifying, we find

[v-(ExB)v—(E*+*B)v+c*ExB)=0.
Suppose v is along E x B (a similar argument can be given if it is directed opposite

to E x B). Taking the dot product of the last equation with v then yields a quadratic
equation for the magnitude v of the boost. The solution is

E? + B>+ (E* 4+ 2¢2E*B? cos 20 + ¢*B*) '
B 2EB sin § '

v

where the sign must be chosen. So as to obtain a positive root.

10. Use the vector identity V- (u x v) =v- (V. xu) —u- (V x v).



Chapter 10 ®)
Linear Vector Spaces s

Linear vector spaces comprise a basic topic in mathematics, besides occurring in
many forms in a very large variety of physical applications. Foremost among these
is quantum mechanics, for which linear vector spaces provide the natural language.
It is therefore helpful to use Dirac notation right from the beginning.

In view of the importance of linear vector spaces in applications, I devote a number
of chapters to various aspects of the subject. Matrices appear frequently in connection
with linear vector spaces. We will discuss many aspects of matrix algebrain Chaps. 11
and 12. But I shall assume that you are already familiar with some of the most
elementary aspects of matrices such as the basic terminology of the subject, the rules
for matrix addition and multiplication, etc. Infinite-dimensional linear spaces and
operators will be considered in Chaps. 13—15. Even the standard topic of orthogonal
polynomials and related special functions will be treated in Chap. 16 essentially from
the point of view of their role as basis sets in function spaces, as this provides a natural
and unified perspective on this topic.

As always, the emphasis will be on applying the results of various theorems, rather
than on formal statements of the theorems themselves and their rigorous proofs.

10.1 Definitions and Basic Properties

10.1.1 Definition of a Linear Vector Space

A linear vector space (for which I shall use the abbreviation LVS), denoted by V, is
a set of elements |}, |®), |x), ... called vectors, with an operation called addition
satisfying the following properties:

() 19) + [¥) = [¥) + |p) € V forevery |), [¢)) € V.
(i) 18) + (1) + 1x)) = (18) + [¥)) + ).
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(ii1) 3 a unique null vector |2) € V such that |¢) + |2) = |¢), V|p) € V.
(iv) 3 a unique vector —|¢) € V for every |@) such that |¢) + (—|@)) = |R2).

The null vector |©2) must not be confused with the symbol |0), which is often
used to denote some specific non-null vector such as the ground state of a quantum
mechanical system.

Over and above the addition of vectors, an LVS also has an operation of multipli-
cation by scalars a, b, . .. belonging to some field. The word “field” is used here in
the mathematical sense. But I will not formally define this object here since the only
ones we are going to use are the fields of real numbers (R) and complex numbers
(©), whose basic properties you know already. This operation of multiplication by
scalars has the following postulated properties:

v) alpyeV,YaeRorCand |¢p) V.
(vi) a(by)) = (ab) [¥).

i) a (V) + 1) = aly) +alp).

(viii) (a+b)|Y) =al)+bly).

(ix) 1Y) = [¥).

(x) 0Jy)=0.

Owing to property (x) above, we may as well use the usual symbol O both for the
null vector |€2) and for the usual scalar zero. That is why you will often come across
equations in which the left-hand side is a vector (or an element of an LVS), and the
right-hand side is just 0, although consistency of notation demands that it should also
be a vector (the null vector).

Other terms used for an LVS are a linear space or a vector space. The elements
|®), |1), etc. are also called ket vectors. If the scalars a, b, . .. are restricted to the
real numbers, the LVS is a real linear space; if the scalars are complex numbers,
we have a complex linear space. An asterisk will be used to denote the complex
conjugate of a complex number.

10.1.2 The Dual of a Linear Space

Every LVS V has a dual space V that is also an LVS. The notation used for the
elements of V is (¢|, (¢| ... . These vectors are called bra vectors to distinguish
them from the elements of V (which are ket vectors). The dual of the dual space V
is again V itself, i.e., V=V.

Itis very helpful to keep in mind the concrete example of n-dimensional Euclidean
space for any finite n > 2, in which the ket vectors can be represented by (n x 1)
matrices or column vectors. The dual space in this instance is again n-dimensional
Euclidean space, and bra vectors may be represented by (1 x n) matrices or row
vectors. -

I must mention here that the proper definition of the dual space V is actually a
little more involved. It is the space of linear functionals formed from the elements
of V with certain prescribed properties. It turns out that these linear functionals
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are essentially the inner products to be introduced shortly. Further, the LVS formed
by these linear functionals is isomorphic to the space of the bra vectors. We shall
therefore regard the latter space itself as the dual space V without further elaboration.

10.1.3 The Inner Product of Two Vectors

The quantity (¢|y) may now be regarded as formed by a bilinear combination of a bra
and a ket, and is called an inner product. It is a scalar (in general, complex)—hence
the alternative name, “scalar product”. The general properties of the inner product
are as follows:

@ (@l (1) +1x0) = (Bl ¥) + (D] ).
() (Wl + (x) 1) = (1 ¢) + (x| 8).

(i) (play)) = aloly).

iv)  (a oY) = a*(oly).

v (o) = (Wlo)*.

Note, in particular, the complex conjugation in (iv) and (v) above. If |1} is represented
byan (n x 1) column vector with complex elements x;, Xz, ..., x,, then (| is given
by the (1 x n) row vector (x; x5 --- x,). The vectors |¢) and |¢) are orthogonal

to each other if and only if (¢|¢)) = 0.

The inner product of a vector with itself helps define the norm of a vector. This
is a generalization of the idea of the length or magnitude of the usual kind of vector
in Euclidean space. The norm of |v)) is defined as

bl € (aplap) /2. (10.1)

The norm of a vector is a positive number, in general. It vanishes if and only if
[1) = |€2), the null vector.

I mention at this point that it is possible to have linear vector spaces in which
an inner product of two different vectors is not defined, but the norm of a vector is
defined in some specific manner (not as in Eq. (10.1), of course). I shall not consider
such spaces in this book. See also the remarks at the end of Sect. 13.3.1 in Chap. 13.

10.1.4 Basis Sets and Dimensionality

A basis set or a basis in an LVS is a set of vectors {|i), k = 1,2, ...} in the LVS
satisfying the following two requirements:

(a) Linear independence: They must be linearly independent of each other. That
is, none of the vectors of the set should be expressible as a linear combination of
the others. An equation of the form )", ax |¢x) = 0 must have no solution other
than the trivial one a; = 0 for every k.
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(b) Spanning the space: They must span the LVS, i.e., every vector |x) € V must
be expressible as a linear combination of the form |x) = Y, by [vx) .

The concept of the span of a vector (or a set of vectors) is easily understood with an
example. In three-dimensional Euclidean space, for instance, the span of e, is the
whole of the x-axis; the span of the pair (e,, e,) or the pair (e, + e,, 2e, — 3e,) is
the xy-plane; and so on.

e It is very important for you to appreciate the fact that the requirements (a) and (b)
above are quite distinct from each other.

For example, in three-dimensional Euclidean space, the vectors (e, e,) are lin-
early independent, but do not span the space. On the other hand, the vectors
(ey, ey, €;, e 1 e, 1 e;) dospan the space, but are not linearly independent because
any one of these four vectors can be written as a linear combination of the other three.

The dimensionality of an LVS: While a basis in an LVS is not at all unique, the
number of vectors constituting the basis is unique to the LVS. This number is called
the dimensionality of the LVS.

e Every basis in an n-dimensional LVS has exactly n vectors.

e No collection of r vectors in an n-dimensional LVS can be linearly independent
ifr > n.

e No collection of r vectors in an n-dimensional LVS can span the space if r < n.

A fundamental theorem that simplifies the study of any finite-dimensional LVS is
the following:

e Every n-dimensional LVS is isomorphic to R", i.e., to the set of “ordinary vectors”
in n-dimensional Euclidean space. (Strictly speaking, R"” must be “endowed with
an Euclidean metric” before we can call it Euclidean space.)

Therefore, the familiar and elementary geometrical insight and experience we have
with regard to vectors in two- and three-dimensional space suffice, with a straight-
forward extension to higher values of n, to study finite-dimensional vector spaces. In
particular, numerous properties of matrices of finite order can be readily understood
along these lines.

% 1. Check whether the following sets of elements form an LVS over the field of
real numbers or the field of complex numbers, as the case may be. If they do, find
the dimensionality of the LVS.

(a) The set of all (n x n) matrices with complex entries.

(b) The set of all tensors of rank 2 with real elements in three dimensions.

(c) The set of all antisymmetric tensors of rank 2 with complex elements in three
dimensions.

(d) The set of all (2 x 2) matrices whose trace is zero.

(e) The set of all real solutions of the differential equation y” — 3y’ 42y =0,
where y is a function of the real variable x, and a prime denotes the derivative
with respect to x.
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(f) The set of all (n x n) unitary matrices. (U is unitary iff UTU = UUT = I.)
(g) The set of all (n x n) Hermitian matrices (with multiplication by real scalars).

% 2. In the three-dimensional LVS with basis vectors

. los) =

S = O
=)

1
lp1) = (0], lo2) =
0

find a vector |¢) such that (¢; [¢)) = 1 fori = 1,2, and 3.

% 3. In areal n-dimensional LVS, consider the vectors |¢;) (1 < k < n) given by

1 1 1 1
0 1 1 1
0 1 10 1 |1 1 |1
v =10 J%)—ﬁ 0 ,|¢3>—% 0 ,“',Wn)—ﬁ 1
0 0 0 1

(a) Does the set {|1x) (1 <k < n)}form a basis in the space?
(b) Construct a vector |y) such that (¢ |x) = 1 for every k (1 < k < n).

Infinite-dimensional linear vector spaces also occur very frequently in all kinds of
applications.

e An infinite-dimensional LVS is one which does not have a finite basis, i.e., it does
not have a basis set of n vectors for any finite value of n.

An example of an infinite-dimensional LVS is the set of all polynomials (of all
orders) of a complex variable z. While most properties of finite-dimensional vector
spaces remain valid for infinite-dimensional ones (under suitable conditions), there
are others that are no longer necessarily valid. What follows in the rest of this chapter
is formally applicable to both finite- and infinite- dimensional spaces—in the latter
case, with certain convergence conditions tacitly assumed. Some of the subtleties
that are specific to infinite-dimensional spaces will be touched upon in Chap. 13.

10.2 Orthonormal Basis Sets

10.2.1 Gram-Schmidt Orthonormalization

From elementary coordinate geometry, we know that points in space can be specified
either in terms of Cartesian coordinates, or in terms of oblique coordinates. The
former system has numerous advantages over the latter. In the same way, it is often
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advantageous to use an orthonormal basis {|¢;)} in an LVS. The elements of such
a basis satisfy the relations

(Pjlo)y =0for j #k, and (¢|¢r) =1 forevery k. (10.2)

That is, we have the orthonormality condition

\ (¢;16x) = 6 (orthonormality). (10.3)

The other crucial property of such a basis is the completeness relation, given by

Z |¢;)(@;| =1 (completeness). (10.4)
J

Here [ is the unit operator or identity operator in the LVS, that is, when it acts
on any vector in the LVS, the vector remains unchanged. The summation over j
in Eq. (10.4) runs over all members of the basis set. It is thus an infinite sum in an
infinite-dimensional LVS.

e Itisimportant to note that orthonormality is a scalar condition while completeness
is an operator relation.

Operators will be discussed at length in subsequent chapters. But it is useful to note
the following right here. (I will return to this point in Chap. 12, Sect.12.1.1.) A
symbol like (¢ 1)) is a complex number, in general—think of it as the product of a
(1 x n) row matrix and an (n x 1) column matrix. On the other hand, a symbol like
|®) (1| is an operator—think of it as the product of an (n x 1) column matrix and
a (1 x n) row matrix. The result is an (n x n) matrix. This can “act” on ket vectors
from the left, for instance, to produce other ket vectors.

An arbitrary basis { [11), |1,), ...} can be transformed into an orthonormal basis
{101), 1¢2), ...} using the Gram—Schmidt orthonormalization procedure, which
goes as follows:

(i) Start with |¢);) and normalize it to get

) _ )
o~ @il

l§1) = (10.5)

(ii) Now take the next vector, |v,), and subtract from it the projection of this ket
along the direction of |¢;). In Eq.(5.21) of Chap.5, Sect.5.1.4, you have seen that
(ep - a) e, is the projection of a vector a along the direction of another vector b.
What we need here is the analog or generalization of this result to vectors in an
arbitrary LVS. The required projection is just {¢;]t») |¢,). Normalizing the result
after subtraction from [1,) yields
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) = [12) — (D1l2) |é1) . (10.6)

[(Waltha) — 1 1) 2]

(iii) Next, subtract from |v3) the projections of this ket along both |¢;) and |¢,),
and normalize the result to get |¢3), and so on. Continuing this procedure yields the
orthonormal required. The general element of the set is given by

k—1
) = Y (ilv) 1)
i=l . k>2. (10.7)

lok) =

k—1 12
[nlwn) = Y o]
i=1

% 4. In a three-dimensional LVS, consider the three vectors

1 1 1
[y = (1], Wa=|1]. I¥3)=
1 0

— O

(a) Show that they are linearly independent.
(b) Use the Gram—Schmidt procedure to construct an orthonormal basis {|¢)} from
these three vectors.

The result of the Gram—Schmidt orthogonalization procedure can be written com-
pactly, and in a suggestive manner, in terms of projection operators. These operators
will be discussed in Chap. 12, Sect. 12.1.2. It will be seen there that the expression
in Eq.(10.7) can be rewritten in a more suggestive form, as in Eq.(12.11).

10.2.2 Expansion of an Arbitrary Vector

Once you have a basis in an LVS, any element of the LVS can be written as a linear
combination of the basis vectors. When the basis is an orthonormal one, some simple
but crucial properties follow.

Let {|¢¢)} be an orthonormal basis in an LVS. Then any arbitrary element |¢) of
the LVS can be expanded in the form

P) = Z cjldj), (expansion formula) (10.8)
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where the coefficients are given by

‘ck = (P | V) (inversion formula). ‘ (10.9)

The inner product (¢ | ¥) is a measure of the “overlap” between the two states con-
cerned: it is a measure of “how much of the vector |¢) is along the vector |¢y)”.
The expansion (10.8) is uniqgue, in the sense that each given vector |) has a unique
set of coefficients {c;}. Conversely, given the full set of coefficients c, the vector
1) is determined uniquely. Incidentally, this is precisely the reason why, in elemen-
tary vector algebra, we often refer to the components (a;, a,, a3) of a vector a as
the vector itself. It is obvious that a specific choice of basis is implicit when we do so.

Change of basis: There is nothing unique about an orthonormal basis in an LVS.
The formulas connecting the expansion of any vector in two different basis sets are
simple and straightforward. Let {|¢x)} and {|x;)} be two sets of orthonormal basis
vector in the LVS. Let the expansions of any vector in the two basis sets be given by

W)= cclde) =Y _djIx;))- (10.10)
k J

The respective expansion coefficients are then related according to

c =y di{dlx;) and d;j =" cilx;lon). (10.11)
J k

Recall that the inner products {¢¢|x ;) and (x|¢x) are complex conjugates of each
other.

In Chap. 13, Sect. 13.2.2, we will encounter the notion of a continuous basis, that
is, a basis set labeled by a continuous variable, instead of the discrete indices k and j
above. Formulas analogous to those in Egs. (10.11) hold good for a change of basis
from a discrete to a continuous basis, and vice versa.

10.2.3 Basis Independence of the Inner Product

The inner product of any two elements of an LVS can also be “expanded” with
the help of an orthonormal basis. When this is done in two different basis sets and
the results are compared, you get a relation between the corresponding expansion
coefficients.

Let |¢) and |W) be two vectors in an LVS, with expansions in two different
orthonormal basis sets {|¢¢)} and {|x;)} given, respectively, by

[0) =D eclg) =) djlx;) and |W) =" Cile) =Y Djlx;). (10.12)
k J k j
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It follows from the orthonormality of each basis that

(WIW) = i Ce=Y diD;. (10.13)
‘ j

In particular, the norm of any vector is independent of the basis in terms of which
you may choose to expand the vector. Setting |V) = |¢)) in Eq.(10.13), we get

12 =) " lel* = ld; . (10.14)
k J

The identity (10.13), and its special case (10.14), are examples of Parseval’s The-
orem, also called Parseval’s formula, or Parseval’s identity. This name is generally
associated with the corresponding result connecting square-integrable functions' and
their Fourier transforms, but it is actually a more general result. The counterpart of
the theorem in the case of orthogonal polynomials will be encountered in Chap. 16,
Sect. 16.1.3. The versions involving Fourier series and Fourier integrals will appear
in Chap. 17, Sect. 17.1.4, and Chap. 18, Sect. 18.1.2, respectively.

% 5. As always, it is instructive to work out the steps in the foregoing explicitly.

(a) Inorder toestablish Eqs. (10.11), start with ¢, = (x| ¥) = (& I|v) and use the
completenessrelations ), |¢;){¢1| =1 =) j Ixj) (x| for the identity operator;
similarly for d; .

(b) Verity Eq.(10.13).

10.3 Some Important Inequalities

10.3.1 The Cauchy—Schwarz Inequality

In elementary vector algebra, we learn that the inner (or scalar) product of two vectors
a and b in Euclidean spaceisa - b = a b cos 6, where a, b are the respective magni-
tudes of the two vectors, and 6 is the angle between them. Since 0 < |cos 6] < 1, it
follows that |a - b| < a b. Moreover, the equality sign applies only when | cos 6] = 1
or @ is either 0 or m, i.e., if and only if the two vectors are collinear.

The Cauchy-Schwarz inequality is just the generalization of these simple prop-
erties to any LVS. It asserts that

el <ol ¢ 1] (10.15)

!Square-integrable functions will be defined in Chap. 13, Sect. 13.2.1.
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the equality holding if and only if |¢) and |¢) are linearly dependent. This result is
easily established as follows.

Proof Consider the inner product

(pF+a|o+av) (10.16)

where |¢), |¢) € V, and a is an arbitrary complex number. This quantity is nonneg-
ative, because it is the square of the norm of a vector in the LVS. It is zero if and
only if |¢) 4+ a|t)) is the null vector, in which case |¢) = —alv), which means that
|¢) and |1} are linearly dependent. Expanding the inner product in (10.16), we have

(PlB) + a* (1b|d) +a (Bl) + lal* (Y]y) > 0. (10.17)

This inequality is valid for any complex number a. In particular, we may choose it
to be given by

(1l9) (oY)
= h e —— 10.18
wiey 1T T ) (1049
Simplifying the resulting expression, we get
(Dl9) (V1) = (BlY) (¥l9) = [(l) I, (10.19)

Taking square roots on both sides immediately yields the Cauchy—Schwarz inequal-
ity, [{(@ |¥)] <]l ¢ I Il ¥ ||. The equality sign applies if and only if |¢) and |¢)) are
linearly dependent.

The generalized Uncertainty Principle: Among the numerous applications of the
Cauchy—Schwarz inequality, the derivation of the generalized Uncertainty Princi-
ple in quantum mechanics is noteworthy. I state this principle here without going
into the definitions of the various terms therein. (These terms will become clear after
we consider operators in subsequent chapters.) Let A and B be the Hermitian (more
precisely, self-adjoint) operators representing any two physical observables pertain-
ing to a quantum mechanical system, and let [A, B] = i C be their commutator. (The
factor i ensures that C is also a Hermitian operator.) Then, if AA and AB are the
standard deviations of the two observables in any state of the system, and (C) is the
expectation value of C in that state, we must have

(AA) (AB) = 5 [(C)]. (10.20)

% 6. Let |1) and |¢) be two linearly independent vectors in a linear vector space.

(a) Suppose the space is a real LVS. Find the value of the (real) scalar « that makes
[l ¥ — ¢ || aminimum, and find this minimum value.

(b) Suppose the space is a complex LVS. Find the value of the (complex) scalar «
that makes || ¥ — ¢ || a minimum, and find this minimum value.
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(c) Use the result of (b) to answer the following question: In the foregoing proof
of the Cauchy—Schwarz inequality (Eqs. (10.16)—(10.19)), can there be a better
choice of the scalar a than the one in Eq. (10.18), that will result in an improved
or more stringent version of the inequality?

10.3.2 The Triangle Inequality

In plane geometry, the sum of the lengths of any two sides of a triangle is greater than
the length of the third side. In fact, this condition is used as a fundamental property
of the distance function or metric in more complicated spaces as well.

In an LVS, the Cauchy—Schwarz inequality leads to the corresponding triangle
inequality: For any two vectors |¢), [¢) € V,

e+vl=lol+lvi.] (1021)

% 7. Use the Cauchy—Schwarz inequality to establish the triangle inequality (10.21).

Requiring that the triangle inequality holds good in infinite-dimensional spaces
imposes some conditions on the elements of such spaces, as you will see in Chap. 13,
Sect. 13.1 in the case of square-summable infinite sequences. When applied to certain
function spaces, the triangle inequality is called the Minkowski inequality.

10.3.3 The Gram Determinant Inequality

The Cauchy—Schwarz inequality is itself a special case of an inequality involving an
arbitrary number of elements of an LVS. As we saw in Chap. 5, Sect.5.1.5, the Gram
determinant of three vectors in three-dimensional Euclidean space is always greater
than or equal to zero. It vanishes if and only if the vectors are linearly dependent.
This is a special case of a more general result.

Let |¥1), |12), ..., |ix) be vectors in an LVS. The Gram determinant of this set
of vectors, G(¢1, ..., ¥x), satisfies the inequality

(brlr) (rlp) -+ (rlx)

wp | (@2ln) (Waliha) -+ (alihi)
G, .., ) = N : > 0. (10.22)

¢k|7/) ¢k|¢2 < ()

The > sign applies if and only if all k vectors are linearly independent. If any of the
vectors is linearly dependent on the rest, the Gram determinant of the set vanishes.
It is obvious that the Cauchy—Schwarz inequality is the special case of this result,
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corresponding to k = 2. In this sense, the inequality in (10.22) is a generalization
of the Cauchy—Schwarz inequality. Note also that, in an LVS of n dimensions, you
cannot have more than n linearly independent vectors. Three important conclusions
follow:

e The Gram determinant of any k vector in an LVS of n dimensions vanishes iden-
tically for all k > n.

e For k < n, the Gram determinant vanishes if and only if the vectors are not linearly
independent.

e Hence the Gram determinant of a set of vectors in an LVS provides us with a test
to determine whether they are linearly independent.

% 8. Show that, if |¢;), |¢,), and |13) are linearly independent vectors in an LVS,
then

Iabn P10 1P s 12> {0 n 17 1(balas) P 1 a1 sl )P
11 s 17 [ ly) P} — 2Re {(119a) (wha|03) (s ln) ).

10.4 Solutions

1. (a) An n*-dimensional complex LVS. (b) A nine-dimensional real LVS. (c) A
three-dimensional complex LVS. (d) A three-dimensional complex LVS. (e) A two-
dimensional real LVS (comprising all functions of the form y = a e* + b ¢>* where
a and b are real numbers). (f) Not an LVS (the sum of two unitary matrices is not
unitary in general). (g) An n’-dimensional real LVS. >

2. |1) is a (3 x 1) column vector with each element equal to unity.

Remark The geometrical interpretation of this fact is elementary. The three unit
vectors given may be represented by the Cartesian unit vectors e, €,, and e; in
three-dimensional space. |1)) is then represented by the vector (e, + e, + e;), which
is the (directed) body diagonal of a unit cube placed with a corner at the origin and
its sides along the positive coordinate axes. >

3. (a) Yes. (b) |x)isan (n x 1) column vector with elements x; = =1,
where 1 < j <n. >

4. (a) None of the vectors can be written as a linear combination of the other two. It is
easy to see that the equation a|1)) + b|v») + c|s) = Oimpliesthata = b = ¢ = 0.
Note, incidentally, that the given vectors can be represented in Cartesian coordinates
ase, +e, +e;, e +e, ande, + e, respectively.
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(b) Applying the Gram—Schmidt procedure, we find

|¢5>—L } |</5>—L } |</5>—L _1
l_ﬁ 1 ’ 2_\/6 _2 ’ 3_\/2 0

You can represent these vectors in Cartesian coordinates by the unit vectors
(e + €y + ez)/ﬁv (ex + €y — 292)/\/6 and (—e + ey)/\/z’

and check out that they form a right-handed triad of unit vectors. You will find it
instructive to draw a figure. >

6. (a) The norm || ¢ — a ¢ || is the positive square root of the quantity

N =l¢y—ag|*= W—adly—ag)

as a function of the real variable «. Minimizing N is equivalent to minimizing || ¢ —
a ¢ ||. Imposing the conditions for aminimum, namely, d N /do = Oandd’N /do? >
0, it is easily seen that a minimum occurs at « = [Re (¢)|¢)]/(¢|®). The minimum
value of N is found to be

min || —a¢P=[1v 12161 —(Re(o¥) ]/ 161

®) || ¥ —ad ||>= N(o, o*) is now a function of both o and o*. Remember that
any complex number « and its complex conjugate o* are linearly independent! To
find the minimum of N, you must write it as a function of the pair of real variables
ay and ay , where o = o + i ;. Imposing the conditions for a minimum, namely,

ON ON
a = 07 o = 09
8a1 8@2
and further ,
0’N 0’N 0*°N 0°N ( 0’N )
> 0, > 0, >
oad da3 dai da3 day o

we find that they are satisfied at the value o = (¢ |¥)/(¢|¢). The minimum value of
N is given by

min || ¢ —a¢ IP= (e 1Pl o> =l )]/ 1o 1*.

(c) You would have noticed the close similarity between the solution in (b) and
the derivation of the Cauchy—Schwarz inequality in Eqgs. (10.16)—(10.19) (with the
obvious identification a = —«). The minimization above should tell you that the
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Cauchy-Schwarz inequality is the best possible one for the quantities appearing in
it. That is, there is no better choice of a in Eq. (10.18) that will yield an improved or
more stringent inequality in the general case. >
7. Start with

I+ IP=(@+¢Io+¢) =1 611>+ 1 ¢ I> +2Re (@)
Use the fact that Re (¢ |¢)) < [Re (¢ |[¥)| < [{¢ [¥)]. >

8. Use (10.22) in the case k = 3 and simplify. >



Chapter 11 ®)
A Look at Matrices g

In this chapter, we continue our discussion of linear vector spaces and linear algebra.
I shall assume that you are familiar with the most basic concepts and operations of
matrix algebra, specifically those pertaining to square matrices of finite order: the
addition and multiplication of matrices, the concepts of eigenvalues and eigenvectors,
and so on. Occasionally, I shall also use terms such as Hermitian matrix and unitary
matrix, under the assumption that you are familiar with the corresponding definitions.
In some cases, I shall return to these terms at appropriate junctures and define them
formally, merely for the sake of completeness.

Loosely speaking, one can look upon a matrix in two different ways. The first, as
an element of some LVS: it is easy to check that all (n x n) matrices form an LVS,
for each given positive integer value of n. The second, as the representation of an
operator: it acts on the elements (or vectors) of some LVS, to produce other vectors.
Which interpretation is involved in any particular case will be clear from the context.
Both aspects will be involved in what follows.

11.1 Pauli Matrices

11.1.1 Expansion of a (2 x 2) Matrix

Let us begin with the simplest case, that of (2 x 2) matrices. For this purpose, it
is most convenient to introduce and study the properties of certain special (2 x 2)
matrices, called Pauli matrices. In quantum mechanics, they are closely associated
with spin-% particles such as electrons, protons, and neutrons. Numerous situations,
both in quantum mechanics as well as in a variety of other contexts, can be reduced
to so-called two-level systems in which the Pauli matrices play a significant role.
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(In quantum mechanics, this refers to a system whose states are ket vectors in a

two-dimensional LVS.) These matrices are therefore of fundamental importance.
Consider a general (2 x 2) matrix M = (Z Z ) Treated as an element of the LVS

of (2 x 2) matrices, this is shorthand for the linear combination (or expansion)

10 01 00 00
a0 b (00 1 (0 +a(00).

The four matrices on the right-hand side constitute the natural basis in the LVS of
(2 x 2) matrices. But there is another, very useful, basis that consists of the (2 x 2)
unit matrix / and the three Pauli matrices. The standard definition of the latter set of

matrices is
def. (01 def. (0 —i def. (1 O
g1 = (1 0), 0) = (l O), g3 = (0—1> (112)

Then, any (2 x 2) matrix M can be written as a linear combination

M:(ig):a01+a101+a202+a303. (11.3)

% 1.Show that the (2 x 2) unit matrix / and the three Pauli matrices form a basis in
the LVS of all (2 x 2) matrices, thatis, the matrix elements (or expansion coefficients)
(a, b, c,d) inthe natural basis (11.1) uniquely determine the expansion coefficients
(g, 1, ap, a3)in (11.3), and vice versa.

The basis in (11.3) has numerous advantages over the natural basis. These follow
from the basic properties of the Pauli matrices, which are listed next.

11.1.2 Basic Properties of the Pauli Matrices

Some of the basic properties of the Pauli matrices o; (i = 1, 2, 3) are as follows:

(i) Each o; is Hermitian (o; = O'ZT) and traceless, with determinant equal to —1.
(ii) Each aiz = I, where I is the (2 x 2) unit matrix. Hence o, =g,
(iii) Each o; has eigenvalues 1 and —1 , with normalized eigenvectors ( (1) )and (9),
respectively.
(iv) The product of any two different Pauli matrices is proportional to the remaining
one:

0’10’2=i0'3,0'20'3=i0'1,0'30'1=i0'2. (114)
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(v) The preceding statement, combined with the fact that the square of any Pauli
matrix is the unit matrix, implies that

ok op =6 I+ € o - (11.5)

(vi) Hence the commutator of any two different Pauli matrices is a constant times
the remaining Pauli matrix:

[O’k, O’[] d;f' O’kJI—O'[O'kzzin[mO'm. (116)
(vii) In particular, the matrices
k=300 (k=1,2,3) (11.7)

satisfy the commutation relations

Uk, Sl =i €xim I - (11.8)

This is an important fact. Equation (11.8) is precisely the so-called angular
momentum algebra—or the Lie algebra of the infinitesimal generators of
the rotation group in three-dimensional space. Thus, there is a close connection
between the Pauli matrices and rotations in three-dimensional space.!

(viii) Similarly, the anticommutator® of two distinct Pauli matrices is identically
zero. Combining this with the fact that the square of any Pauli matrix is the
unit matrix, we have

[0k, 0]y & ovor+ 0,00 =264 1. (11.9)

It is customary to denote the set of Pauli matrices (o, 0, 03) by the “vector”
o. This is more than just a matter of notation; there is a proper justification for it,
because of the way the Pauli matrices transform under a rotation of the coordinate
system: they transform precisely like the components of a vector. More will be said
about this in Sect. 11.3.2 below, and in Chap. 15, Sect. 15.3.1. Here are some useful
identities involving o. Let a and b denote ordinary vectors in three-dimensional
Euclidean space. Then

[o,(a-0)] =2i(axo) (11.10)
(a-0)(b-o)=(a-byI+i(axh) o (11.11)
[(a-0),(b-0)]=2i@xhb) o (11.12)

IT have already stated in Chap. 5, Sect. 5.2 that we will come back to this topic in Sect. 11.3.1, as
well as in Chap. 12, Sect. 12.4.2 and Chap. 15, Sects. 15.3.1 and 15.3.3.

2Sometimes the notation {, }is used for the anticommutator, but I prefer the notation [ , ]+ in
order to avoid confusion with other quantities such as the Poisson bracket.
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% 2. Use the properties of the Pauli matrices to establish the identities in Egs. (11.10)—
(11.12).

% 3. Letn = (n;, ny, n3) beany unit vector in three-dimensional Euclidean space.

(a) Show that the eigenvalues of the matrix o - n remain equal to 1 and —1, indepen-
dent of the direction of the unit vector n. (Remember that n? + n3 +n3 = 1.)
Find the corresponding normalized eigenvectors.

(b) Show that (0 xn) (o-n) =io —i(o-n)n.

(c) Show that (o -n) (o0 xn) =i(oc-n)n—io.

Remark (a) The spin operator of a spin-% particle is given by S = %ho: Hence the
eigenvalues of any component (along any arbitrary direction, not restricted to the
z-axis, or any of the axes in Cartesian coordinates!) of the spin operator of such a
particle are given by :I:%h.

The identities in (b) and (c), and some of those to follow, are particularly useful—for
instance, in the study of the behavior of the intrinsic magnetic moment of an electron
in an applied magnetic field.

11.2 The Exponential of a Matrix

11.2.1 Occurrence and Definition

The exponential of a square matrix or, more generally, the exponential of an operator,
occurs frequently in physical applications. Indeed, it is ubiquitous in physics. In a
very broad sense, there is good reason to regard the exponentiation of an operator as
the central problem of mathematical physics itself. Here are two important instances:

e Quantum mechanics: Given a system with a time-independent Hamiltonian H,
the time evolution of the physical observables pertaining to the system is governed
by its time-development operator e~ H/,

e Equilibrium statistical mechanics: In the canonical ensemble, all statistical aver-
ages of physical quantities pertaining to the system are governed by its density
operator e~ H/ksT)

In both these subjects, therefore, the basic problem is to find the exponential of the
Hamiltonian. Even differential operators such as d/dx, d?/dx?, V2, etc., can be
exponentiated, and a specific meaning can be given to the resulting operators. You
have already come across an example in elementary calculus. The Taylor expansion

2
f(x+a)=f(x)+af’(x)+%f”(x)+~- (11.13)
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can be written symbolically as

f(x +a) = eV £(x). (11.14)

This tells you that the effect of exponentiating the operator a (d/dx) is a translation
of the argument x of the function it acts on by the amount a.

For the moment, however, we are only concerned with the exponential of an
(n x n) square matrix M, for a finite value of n. This is defined as

def. M? o M
expM=I+M+7+---=Z;n!, (1115)

exactly analogous to the definition of e¢* for any complex number z. Here I is the
unit matrix that is of the same order as the matrix M. Just as the power series for e*
is absolutely convergent for all finite values of |z|, the series for e is convergent for
all matrices with finite elements. (This statement can be made more precise, but it
suffices for the present.)

% 4. Show that, if o is any one of the three Pauli matrices and « is any complex
number, then
i oy

e = (cos a) I + i (sin ) oy .

This formula is a special case of the identity (11.16) below.

11.2.2 The Exponential of an Arbitrary (2 x 2) Matrix

Expanding an arbitrary (2 x 2) matrix in terms of the unit matrix and the Pauli
matrices enables us to derive a very useful formula for the exponential of the matrix.

Let a be an ordinary vector with Cartesian components (a; , a;, a3), and let
(a - o) stand for the matrix a; oy + a 0> + a3 03, as usual. Then

. a
e””’:lcosa—i—i( o)

sin a, where a = (al2 + a% + a32)1/2. (11.16)

This formula is the (2 x 2) matrix analog of the familiar Euler identity e’ 0 =cos 0§+
i sin @ for any real number 6.

% 5. Establish the identity in Eq. (11.16).

Equation(11.16) is readily extended to the case of e*?, where « - o stands for
aj 0] +a00 +a303, and (o, oy, o) are real numbers. Simply set i a = «,
ie,a; = —iap, ap = —iap, az = —i a3 in the formula to get
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(x-0o)

€*? =1 cosh o + sinh , where a = (af +aj +a3)"/2.| (11.17)

What has actually been done here is an analytic continuation of the original formula
from real values of the quantities (a;, a, a3) to pure imaginary values of these
variables.> Equations (11.16) and (11.17) are completely equivalent to each other,
and are actually valid for arbitrary complex numbers (o, an, a3) or (a;, az, az).
(You must then remember that « or @ need not be real quantities, in general.)

We know that an arbitrary (2 x 2) matrix M can be expanded as
M=oyl +a101+xmory+azos=ap] + - 0o, (11.18)

and that the unit matrix commutes with all matrices. It follows from (11.17) that we
have the closed-form expression

M — oo (1 cosh a + % Gnh a) (11.19)

for the exponential of any (2 x 2) matrix M. Recall that g = % Tr M.

Significantly enough,

e there is no counterpart of such a simple closed-form expression for the exponential
of a general (n x n) matrix for n > 2.

In some special cases, however, such higher order matrices may be exponentiated
quite easily.

% 6.Here are two examples of matrices that can be exponentiated readily.

010
(@) IfM =001 |, find eM. Hence write down the eigenvalues of e.
000
(b) Let M be the (n x n) with each element M;; = 1forl <i <nand1 < j <n.

Find eM.

In the next section, we shall encounter a family of (3 x 3) matrices of physical
significance that can be exponentiated easily.

3 Analytic continuation is a crucial property of analytic functions of complex variables. We will
consider it in some detail in Chap. 25.
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Fig. 11.1 Specifying a PN
rotation of the coordinate
axes about an axis along a
unit vector n, through an

angle v
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/

’
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11.3 Rotation Matrices in Three Dimensions

11.3.1 Generators of Infinitesimal Rotations and Their
Algebra

Let us return to rotations in three-dimensional space, and consider the (3 x 3) orthog-
onal matrices that describe these rotations. Recall, at this stage, the remarks made at
the end of Chap.5, Sect.5.1.2, regarding the representation of rotations by (3 x 3)
matrices. There are many ways of parametrizing rotations in three dimensions. A very
useful way in applications is via three Euler angles. These are used, for instance, in
studying the rotational motion of a rigid body. Any given orientation of the triad of
coordinate axes may be reached from an initial reference orientation by a succession
of three rotations about a prescribed set of three different axes. There are, in fact,
12 different conventions for defining Euler angles. I will not digress into these. Our
objective here is somewhat different: we are interested in the rotation matrices per
se and in their algebraic properties. We are also interested in finding the explicit
transformation formula of a vector under an arbitrary rotation of the coordinate axes.
As shown below, there is quite an easy way to arrive at the exact answer without any
tedious algebra.

Euler’s rotation theorem: A convenient way of parametrizing any given rotation
is to specify the axis of rotation, i.e., the direction in space about which the triad
of Cartesian coordinate axes is rotated, and the amount or angle of rotation about
this axis. (This is essentially Euler’s rotation theorem.) We may therefore denote
a general rotation matrix by R(n, ¥), where n is the unit vector along the axis of
rotation, and ¢ is the angle of rotation about this axis (see Fig.11.1). It appears
to be quite obvious that the range of ¥ is 0 < ¥ < 27. We may take it to be so,
for the present. (Somewhat surprisingly, this point requires deeper examination. I
will return to it in Chap. 15, Sect.15.3.5.) All you need in order to write down
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the rotation matrices corresponding to the special case of rotations about the three
Cartesian axes themselves is to recall a result from elementary coordinate geometry.
A rotation by an angle v of the coordinate axes about the origin in the x y-plane gives
the new coordinates x ' = x cos 1 + y sin ¢ and y’ = —x sin ¢ + y cos 1. The z
coordinate is left unchanged. Therefore

cos Y siny 0
R(e,, )= | —sinycosy 0]. (11.20)
0 0 1

By cyclic permutation of xyz, we may write down the other two matrices

1 0 0 cos 1 0 —sin v
R(ey, ) =10 cos®y siny |, R(ey, ) = 0 1 0 . (11.21)
0 —sin ¥ cos Y sin ¢ 0 cos

It is easily checked that each of these matrices is orthogonal, and has a determinant
equal to +1. Hence each of them can be built up from the identity matrix by a suc-
cession of infinitesimal rotations about the axis concerned. We can work backwards
from Eqs. (11.20) and (11.21) to see how this is done.

Consider, for definiteness, R(e;, 1)). We could implement such a rotation by n
successive rotations about the z-axis, each through an infinitesimal angle 41/, such that
n 91 = 1. The matrix R (e, §1)) is easily written down: use the fact that sin d) >~ Jip
and cos 61 >~ 1 to first order in §1p. Separating out the (3 x 3) unit matrix, which
corresponds to the identity transformation (or zero rotation), we get
i

O —
R(e,, 01)) = I +i(5¢) J;, where Js=|i 0 (11.22)
00

(==

The parameter ) has been factored out in the expression above. This makes the
elements of the matrix J3 pure numbers that are independent of the angle of rotation.
The reason for separating out the factor i in the definition of J3 is to ensure that J3
is a Hermitian matrix.* The finite-angle rotation matrix R(e., ¢) is then given by

R(e;, v) = R(e;, 6¢) --- R(e;, 6v) = [R(e;, ov)]" = [1 +1i (o) J3]". (11.23)

n factors

Setting 1) = 1p/n and passing to the limit n — oo,

“That is, it is equal to its complex conjugate transpose, or J3 = J3I Observe that I have used the
same symbol (J3) for another matrix earlier in this chapter, in Eq. (11.7): namely, the (2 x 2) matrix
% 03 . This is deliberate, and the reason will become clear shortly.
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1) J3\" -
R(e;,¢) = lim (1+”/} 3) =V, (11.24)
n—00 n
Repeat the procedure above for the matrices R(e,, 1) and R(e,, 1)), to get
R(e,, ) =€ ¥! and R(e,, 1) =€ V", (11.25)
where
000 001
Ji=100—i and L= 000]. (11.26)
0:i 0 —i00
To sum up

e The form R(e;, 6v) = I +i (§v) J3 makes it quite clear why the matrix J3 is
called the generator of an infinitesimal rotation about the z-axis (i.e., a rotation
about the origin, in the xy-plane). Similarly, J; and J, may be identified as the
generators of infinitesimal rotations about the x and y axes (i.e., about the origin,
in the yz-plane and zx-plane), respectively.

e The matrix corresponding to rotation by a finite angle is obtained by exponentiating
the corresponding generator. This is a general feature of groups of transformations
(more generally, of Lie groups).

e The matrices J;, J», and J3 are Hermitian, and they satisfy the commutation
relations

ks I = itim I - (11.27)

This is the same angular momentum algebra that is satisfied by the matrices % Ok ,
as you have seen already in Egs.(11.7) and (11.8).

Y 7. It is instructive to check out the statements made above.

(a) Start with Eqgs.(11.21) and write down the corresponding matrices for an
infinitesimal rotation angle ¢7) about the directions e, and e,, respectively.
Express these as [ + i (0¥) Ji] and [I + i (§v) J»], respectively, to verify that
Jy and J, are the matrices written down in Egs. (11.26).

(b) Using the expressions given in Egs.(11.26) and (11.22) for the matrices J; ,
directly calculate the exponentials exp (i) Ji) for k = 1,2, and 3 by summing
the corresponding exponential series. Verify that you recover Egs.(11.21) and
(11.20) for the finite-angle rotation matrices R(ey, ), R(ey, 1), and R(e,, 1).

(c) Verify that the generators J; satisfy the commutation relations in Eqgs. (11.27).

Here is an important observation:

e The fact the (3 x 3) matrices J; in Egs. (11.26) and (11.22) satisfy the same com-

mutation relations as the (2 x 2) matrices % o means that these two sets of matrices
are just two different representations of the same Lie algebra, namely, the angular
momentum algebra.
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That is the reason why I have used the same symbols for both sets of matrices. We
shall consider the angular momentum algebra further in Chap. 12, Sect. 12.4.2 and
in Chap. 15, Sects. 15.3.1-15.3.3.

11.3.2 The General Rotation Matrix

Equations (11.24) and (11.25) show that the matrices corresponding to rotations
about the three Cartesian axes can be written as exponentials of the corresponding
infinitesimal generators. What about a general rotation by an angle v, about an axis
n pointing in an arbitrary direction in space?

I have mentioned in Sect. 11.1.2 that the Pauli matrices (o, 05, 03) transform
under rotations like the Cartesian components of a vector, which is why it makes
sense to denote the triplet collectively by o. This is actually a special case of the
following more general statement (that will be proved in Chap. 15, Sect. 15.3.1):

e The three generators of infinitesimal rotations in three-dimensional space, (J; , J>,
J3), themselves transform under rotations like the components of a vector.

It is therefore natural to denote the triplet by the vector symbol J. Then, if the
components of the direction vector n are given by (n;, ny, n3), we are guaranteed
that

R(n’ 1/}) — ei (Jinmi+Jrna+J3nz) ¢ — ei J-n) UJ' (1128)

Since the different matrices J; do not commute with each other, however, the right-
hand side of (11.28) is not equal to the product of exponentials, i.e.,

el]zl’lg ] et]3 n}w'

ei (Jini+Jana+J3nz) # ei][ ny
In spite of this problem, it turns out to be possible to compute the exponential of the
(3 x 3) matrix i (J - n) ¢ exactly, and in closed form. Here is how this is done.
We want to find eM?, where M =i (J - n). Using the definitions of the matrices
Jr above, we have
0 ny —np
M=iJ-n)y=|-n3 0 n; |. (11.29)
ny, —np 0

In order to find the powers of M explicitly, it is helpful to note that the general
element of M is given by
Mij = €jjk Nk - (1130)

Now use the fundamental relation between the Levi-Civita symbol and the Kronecker
delta, Eq. (5.13) of Chap. 5, Sect.5.1.3. It follows readily that
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(Mz)ij =nin; — (5,‘_,‘ , and hence (M3),‘j = —€jjk Nk = —M,‘j . (1131)
The fact that M3 = —M immediately enables us to simplify the exponential e™?.

The final answer for the matrix elements of the rotation matrix R (n, 1)) is both simple
and elegant. It reads

Rij(n, ) = d;j cos ¥ +n;n; (1 —cos 9) + € ny sin 1. (11.32)

Even more explicitly, if the spherical polar angles of the unit vector n are 6 and ¢,
the direction cosines are given by

ny = sin 6 cos ¢, ny =sin 6 sin p, n3 = cos 6. (11.33)

Substituting these expressions in Eq. (11.32), you can write down the complete
rotation matrix for an arbitrary rotation R(n, 1)).

% 8. Once again, you will find it instructive to work through the algebra to arrive at
the results above.

(a) First verify Egs. (11.29)—(11.31).

(b) Hence derive Eq. (11.32) for the elements of the general rotation matrix R(n, ).

(c) Write down the rotation matrix R(n, ) explicitly, using spherical polar coordi-
nates for n as in Eqgs. (11.33).

% 9. Show that the eigenvalues of the general rotation matrix R(n, v) are 1, el
and e7Y.

The matrix R has real elements, but it is not symmetric. If it had been so, all its
eigenvalues would have been real. (The eigenvalues of a real symmetric matrix are
real.) Rather, it is an orthogonal matrix with real elements. It is therefore a special
case of a unitary matrix. As we shall see in Chap. 12, Sect. 12.2.1, all the eigenvalues
of a unitary matrix must be complex numbers with magnitude equal to unity, i.e.,
they must lie on the unit circle in the complex plane.

What can be said about the eigenvectors of R(n, 1)? It should be obvious on
physical grounds that n itself, i.e., the column vector with elements (n;, ny, n3),
is the (normalized) eigenvector corresponding to the eigenvalue 1. This is just the
statement that a rotation about an axis directed along n leaves the coordinates of
all points on that axis unchanged. The other two eigenvectors, corresponding to the
eigenvalues e*'¥, cannot be vectors with real elements. If that were so, it would mean
that a rotation about n also leaves unchanged some two other directions in physical
space. But this is obviously not true.

Rotation matrices in rigid-body dynamics: Rotation matrices have an obvious phys-
ical application in the dynamics of rigid bodies. One introduces a space-fixed coordi-
nate frame with an origin Og, and a body-fixed coordinate frame that co-moves with
the rigid body (see Fig. 11.2), with its origin Oy, at the center-of-mass of the body
(say). The instantaneous configuration of the rigid body is then given by the position
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Fig. 11.2 Space-fixed and
body-fixed coordinate frames

>

vector of Oy, (with respect to O;) as well as and the orientation of the body-fixed frame
with respect to the space-fixed frame. The latter is evidently given by some rotation
matrix. The time evolution of this rotation matrix then describes the orientational
dynamics of the rigid body.

Suppose we are given the numerical values of the elements of a rotation matrix
that describes the orientation of a rigid body. Can we deduce the angle 1) through
which the body-fixed frame has been rotated with respect to the space-fixed frame,
without a knowledge of the rotation axis n? Recall that the frace of R(n, ) is just
the sum of its eigenvalues, so that

TrRM, ) =1+¢Y +e ™ =1+2cos 9, (11.34)

independent of the axis n. Therefore %(Tr R(n, o) — 1) gives the numerical value
of cos v, regardless of the direction of n. Extracting ¢ itself (given that cos 1) is
double-valued in [0, 27]) involves further technicalities that I shall not go into here.

Finally, one may ask: what does the general rotation matrix look like when the
generators are represented by the Pauli matrices, i.e., when J; = % o ? This question
will be answered in Chap. 15, Sect.15.3.3. A related aspect is suggested by the
following observation.

A simple but important observation: As mentioned at the beginning, although we
expect the angle of rotation ¢ to take values in the range 0 < v < 2, this point
requires further examination. A hint is provided by the following simple observation.
If we set ¢ = m in the general expression (11.32) for R;;(m, 7)), we get

Rij(n, m) = —6;; +2n;n; . (11.35)

Note that the term linear in n has vanished. As a consequence, a rotation by an angle
7 about the axis —n is given by exactly the same expression! That is,

Rij(n,m) = R;;(—n, ™), or R(m, )= R(—n,m). (11.36)
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Fig. 11.3 Under the rotation
R(n, 1), the transformed
vector r’ has components
alongr, nandr x n

In other words:

e A rotation through 7 about an axis pointing in any direction n is exactly the same
thing as a rotation through 7 about an axis pointing in the opposite direction —n.

This seemingly trivial observation has profound consequences, as you will see in
Chap. 15, Sect. 15.3.5.

11.3.3 The Finite Rotation Formula for a Vector

Once we have R(n, 1) explicitly, it is straightforward to apply it to an arbitrary
position vector r. We have

x; = R,-J-xj = X; COS w—i—nixjn‘,- (1 — COS w) +eijkxjnk sin w (1137)

Expressing this formula back in terms of the vectors r and n helps us understand it
in physical terms:

r’ = (cos Y)r+ (1 —cos ) (r - n)n + (sin ¥) (r x n). (11.38)

Equation (11.38) is sometimes called the finite rotation formula for a vector. Need-
less to say, it also tells us precisely how any vector transforms under the rotation
R(n, 1), by the very definition of a vector. In other words, by its very definition, any
vector A transforms under the rotation according to

A— A’ = (cos ) A+ (1 —cos ¥) (A-n)n—+ (sin 1) (A x n). (11.39)

The formula is almost completely deducible with the help of simple general argu-
ments, as follows. A rotation is a linear, homogeneous transformation. Given the
vectors r and n, what can the vector r’ possibly be? It must be linear and homo-
geneous (and of first degree) in r. As a vector in three-dimensional space, it must
be expressible as a linear combination of the two given vectors, r and n, and the
vector (r x n) that is normal to the plane formed by the two. (See Fig. 11.3.) Thus,
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linearity and homogeneity already tell us that r’ must be a linear combination of
r, (r-n)n, and (r x n). This exhausts the dependence on r and n. Hence the coef-
ficients in the expansion can only be scalars that depend on the angle 1. Let us call
these f1(¢), f(1), and f3(1), respectively. Thus, we must have

r'=fith)r+ HL@) (x-mn+ f3(¥) (r xn). (11.40)

Itis obvious that arotation by a multiple of 27 brings us back to the original coordinate
axes. Hence each f; (1) must be a periodic function of ¢/, with period 27. The identity
transformation corresponds to ) = 0, and it must take every point to itself. Hence
f1(0) =1 and £,(0) = f3(0) = 0. In the particular case when r is collinear with n,
we have r = %rn, so that (r - n) n = r and also r x n = 0. But points on the axis
of rotation must remain unchanged, so that r’ must reduce to r itself. This condition
gives f1(¥) + f>(¥) = 1. Squaring both sides of Eq. (11.40) and setting >, = 1 — f}
gives

rP =+ Hr+A = ff= )@ -n)’ (11.41)

But r’? = r? under a rotation, whatever be n. Therefore f12 W) + f32 ()) must be
identically equal to 1. The simplest possible solutions that immediately suggest
themselves, taking into account the other conditions on these functions, are f}(¢) =
cos ¢ and f3(0) = sin 1. Proving properly that this is so takes a little more work: as
you might expect, it once again involves the building up of a finite rotation as a
continuous sequence of infinitesimal rotations.

11.4 The Eigenvalue Spectrum of a Matrix

11.4.1 The Characteristic Equation

The eigenvalues of an (n x n) matrix M are the roots of its characteristic equation
(sometimes called the secular equation)

Py € det (AT — M) =0. (11.42)

Py () is a polynomial of order n in A, called the characteristic polynomial of M.
The equation determining the eigenvalues is of the form

PuN) =N+ N e N2+, =0. (11.43)
The fundamental theorem of algebra guarantees that this equation has exactly n

roots (A1, Az, ..., A,) in the field of complex numbers. That is, Eq. (11.43) can be
written as
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Py (\) =H(/\—/\,-) =0. (11.44)
i=1

Some of the roots may be repeated. The set of eigenvalues is the spectrum of the
matrix M. (More generally, the spectrum of an operator is the set of its eigenvalues.)

The coefficients ¢; in the characteristic equation are determined, of course, by the
elements of the matrix M. It follows from elementary algebra that

At X+ A = —C1,
M+ A+ i = o,
(11.45)

g
>
Q
>
s

Il

(=D"c, .

What is noteworthy is that all the coefficients ¢, be expressed in terms of certain
invariant quantities, i.e., quantities that are unchanged under similarity transforma-
tions on M:

e The eigenvalues of an (n x n) matrix M can be expressed in terms of the invariant
quantities Tr M, Tr (M?), ..., Tr (M"), where Tr denotes the trace (i.e., the sum
of the diagonal elements of the matrix concerned).

In the simple cases n = 2 and n = 3, for instance, the characteristic equations can
be written in the form
N-TA+ 3T -T)=0 (11.46)

and
NN +I T —-T)A— T+ -1 T3 =0, (11.47)

where T, = Tr (M").
% 10. Establish Eqs. (11.46) and (11.47).

11.4.2 Gershgorin’s Circle Theorem

In numerical analysis, it is helpful to be able to put some bounds on the eigenvalues
of a matrix. A very useful result in this regard is Gershgorin’s Circle Theorem. Let
M;; denote the diagonal element in the ith row of an (n x n) matrix M. Let

=Y Ml (11.48)
j=1

J#i
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Fig. 11.4 All the A-plane
eigenvalues of any (n x n)
matrix M lie in the union of
the n Gershgorin disks of M
in the complex plane. The
dots indicate the centers of
the disks shown

be the sum of the magnitudes of the nondiagonal elements of the ith row. Draw a
circle in the complex plane, with M;; as the center and r; as the radius. This is called
a Gershgorin disk. The disk includes its boundary circle. Carry out this construction
for each of the rows of the matrix, from i = 1toi = n. (Figure 11.4 depicts some of
the Gershgorin disks of a matrix M.) Then the theorem states that:

e Every eigenvalue of M lies in one or more of the Gershgorin disks. Hence all the
eigenvalues lie in the union of the disks.

e The statement remains true if the columns of M are used instead of the rows, in
defining the radii of the disks.

Proof: Let )\ be an eigenvalue of the matrix M, with eigenvector u, so that Mu = \u.
Suppose uy is the element of the column vector u with the largest magnitude among
all its elements. Then

ZMkj u; =/\uk, or ZMkj u; = (/\—Mkk)uk. (1149)
B
Take absolute values on both sides, and divide out by |u;| (which is guaranteed to
be nonzero, because u is not the null vector). Use the fact that the absolute value of
a sum is less than or equal to the sum of the absolute values of its individual terms.
It follows that
A — M| <1y, (11.50)

where ry is defined as in Eq. (11.48), with k replacing i. Hence the theorem.

% 11. Work through the steps above to establish Gershgorin’s Circle Theorem. Check
out that the result goes through if the radius 7; is defined as the sum of the magnitudes
of the nondiagonal elements of the ith column, instead of the ith row.

A specific application of the theorem occurs in the context of certain random
(Markov) processes. This will be discussed in Chap.21, Sect.21.2.3.
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There are several straightforward extensions of the basic result derived above.
Here is an example:

e If one of the Gershgorin disks is disjoint from the rest, then exactly one eigenvalue
lies in this disk.

The foregoing results are general ones, applicable to all square matrices. But more
can be said regarding the eigenvalues of special kinds of matrices (e.g., Hermitian,
unitary, etc.), as you will see in Chap. 12, Sect. 12.2.

11.4.3 The Cayley—Hamilton Theorem

The Cayley—Hamilton Theorem is a simple-looking, but nontrivial and important
result in matrix analysis. It has generalizations in abstract algebra. The theorem
states that

e every (n x n) matrix M satisfies its own characteristic equation.

That is, M satisfies the matrix equation

n
PuM)y=M"+c,M" '+ M" 2+ 4, I = H(M—)\i =0,

= (11.51)
where the coefficients ¢; are those occurring in the characteristic equation, Eq.
(11.43). As a consequence of this theorem, we are guaranteed that the nth power
of any (n x n) matrix M, namely, the matrix M", can be written as a linear combi-
nation of the matrices 7, M, M?, ..., M"~!. Hence all higher powers M"** can
also be expressed as such linear combinations. In principle, therefore, e can be
expressed as a linear combination of the matrices I , M, M 20, M Finding
the coefficients of such an expansion, however, may not be an easy task: in general,
each coefficient would itself be an infinite series.

Some simplification can occur in certain special cases such as that of triangular
matrices. A matrix in which all the elements below [respectively, above] the prin-
cipal diagonal are zero is called an upper triangular matrix [respectively, lower
triangular matrix]. It follows by inspection that

e the eigenvalues of a triangular matrix are just the elements on its principal diagonal.
(Think of how you would write out the determinant det (A — M) on the left-hand
side of the characteristic equation.)

It is also easy to see that

e any power of an upper [respectively, lower] triangular matrix is an upper [respec-
tively, lower] triangular matrix.
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% 12.Consider the (n x n) upper triangular matrix M whose elements are equal
to unity on the diagonal just above the principal diagonal, all other elements being
equal to zero. That is,

0100---00
0010---00
0001---00
M=1..... . , or Mjj =204, j, where ] <i < (n—1).
0000---01
0000---00

Show that exp M is also an upper triangular matrix, with elements given by

M
(e )i,i+k = 1/k!

where, for each k in the range 1 < k < (n — 1), the index i takes values in the range

1<i<@m-—k).

A natural question that arises is the following: Suppose we find, quite independently
of a knowledge of its eigenvalues, that an (n x n) matrix M satisfies an nth order
polynomial equation of the form

M'+b M b, M" >+ +b, 1 =0. (11.52)
Can we then conclude that the polynomial

N+ XN o N2 4 by A+ by, (11.53)
must necessarily be the characteristic polynomial Py (\) of the matrix M ? If so, that
would in some sense be a converse of the Cayley—Hamilton Theorem. The answer

to the question is “no”. I will return to this matter in Chap. 12, Sect. 12.3.5, after we
discuss the idea of the minimal polynomial of a matrix.

11.4.4 The Resolvent of a Matrix

Let M be any (n x n) matrix. An important quantity associated with it is its resolvent,
defined as the inverse of the matrix (zI — M), where z is a complex variable. That
is,

Ru@ & @1-m". (11.54)

The resolvent Ry, (z) does not exist for a given value of z if and only if z belongs
to the set of eigenvalues of M, i.e., if z lies in the spectrum of M. A convenient
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representation of the resolvent of a matrix will be given in Eq. (12.68) of Chap. 12,
Sect. 12.5.1.

The definition of the resolvent and the statements just made are not restricted
to matrices in a finite-dimensional Euclidean space. They are valid for any general
linear operator in an LVS. In Chap. 32, Sect.32.1.2, we will encounter the resolvent
of an integral operator, in the context of integral equations.

% 13. The eigenvalues of a (3 x 3) matrix M are giventobe 0, i a and —i o, where
« 1s a positive constant.

(a) Using the Cayley—Hamilton Theorem, show that

€[M=I+isinhon+(l—coshoz) M2

o o?

(b) Similarly, show that the resolvent of M reduces to a polynomial in M, namely,

Mz M?
2 2+ 2 2"
7t -t

1
RM(Z) = ; +

11.5 A Generalization of the Gaussian Integral

The n-dimensional generalization of the standard one-dimensional Gaussian integral
occurs quite often in applications. In Chap. 2, Sect. 2.1.2, we have already considered
acouple of simple special cases. The general n-dimensional Gaussian integral is given

by 00 00 n n
/ dxl.../ dx, exp{—ZZA,»jx,-xj}, (11.55)
—00 —00

i=1 j=I

where the coefficients A;; are the elements of an (n x n) real symmetric matrix A
whose eigenvalues are all positive. If we regard (x;, x2,..., x,) as the compo-
nents of a column vector x, then its transpose X! is a row vector with components
(x1, x2, ..., x). The integrand in Eq. (11.55) can be written more compactly as
exp (—x' Ax). Then

o0 oo T T ﬂ-f’l
f dx / dx, e ™ A% = '/‘d"xe*X Ax — . (11.56)
o o det A

This is a very important result.

% 14. Establish Eq. (11.56).

From the general formula (11.56), we can read off the special cases considered in
Chap. 2, Sect.2.1.2, namely, Egs. (2.6) and (2.9). I repeat them for ready reference.
Let—1 <pu < land—% < v < 1. Then
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o & 2 2 s
/ dx/ dy e” ) — (11.57)
—0o0 —00 1_,“2
and
o ° o (2 24,249 2 2 ) ’/T3/2
dx d dZ efx +y +z"+F2vx y+H2ryz+2vzx — ) 11.58
/—oo /—oo y/—oo (1 - V)\/l + 2v ( )

Itis easily seen that det A = (1 — p?) and (1 — v)?(1 + 2v), respectively, in the two
cases. In the second case, the fact that the eigenvalue 1 — v of the matrix A is a two-
fold repeated eigenvalue is responsible for the stronger divergence of the integral at
v = 1 than the inverse square root divergence at v = —% . This is the answer to the
question posed at the end of Sect.2.1.2 in Chap. 2.

11.6 Inner Product in the Linear Space of Matrices

I have stated (and used the fact) that the set of gll (n x n) matrices with complex
entries forms an LVS (V, say). The dual space V is the space of all the Hermitian
conjugates of the matrices in V, which is again V itself. This LVS is therefore self-
dual. The interesting question is how one defines the inner product of two elements
in this case.

Let A and B be two elements in this LVS, i.e., two (n X n) matrices.” One way
of defining the inner product (A, B) of the two elements is

def.

(A, B) = Tr(A"B), (11.59)

where AT denotes the Hermitian conjugate of A.

% 15.Use the definition of the inner product given above to verify that

(@) (B, A) = (A, B)* (where * denotes the complex conjugate).
(b) (A, A) > 0, the equality sign being applicable only when A is the null matrix.

% 16. Let A be an (n x n) Hermitian matrix that is not a multiple of the unit matrix.
Show that
2 2
Tr (A°) > (1/n) (Tr A) .

% 17. If A is an arbitrary (n x n) matrix with elements A;; and U is any unitary
(n x n) matrix, show that

SN 1Al = /| Tewt A [

i=1 j=1

5We should really use ket vectors to denote these elements. But as these objects are matrices, I shall
stick to plain A, B, etc., here, in order to avoid confusion.
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Inequalities such as these find application in quantum mechanics and statistical
mechanics, especially in connection with density matrices.

11.7 Solutions

1. It is trivially seen that the relationship between the sets of coefficients is a linear
one, with unique solution sets. Thus

a=op+az, b=o)—ian, c=oa)+ian, d=ay—a3.
Hence
ag=1a+d), oy =3b+c), m=131ib—c), azs=1@a—d.
Remark Note that the coefficient of the unit matrix in the expansion (11.3) is oy =

% Tr M. It follows that any fraceless (2 x 2) matrix can be expanded uniquely as a
linear combination of the three Pauli matrices. >

2. Use the index notation and the summation convention. For Eq. (11.10), for
instance, you have to evaluate the commutator [0; , a; o;] = a;[o;, oj]. >

5. Use the fact that aiz = [ for each i, and the fact that the anticommutator of any
two different Pauli matrices is the null matrix. >

6. (a) Observe that M2 is a (3 x 3) matrix with (M?),3 = 1, and all other elements

equal to zero. The matrix M3 is the null matrix, implying that M" is the null matrix
for all n > 3. Hence e” = I + M + M? /2! in this case, and we get

1
2
1
1

o

Il
S O =
O = -

This is an upper triangular matrix (all the elements below the principal diagonal are
zero). Hence the eigenvalues of the matrix e are the diagonal elements themselves,
ie., 1,1,and 1.

Remark The eigenvalues of an upper or lower triangular matrix are just its diagonal
elements (see Sect.11.4.3). It is easy to see how this comes about. Consider the
secular equation det (A — A) = 0 whose roots give the eigenvalues of any square
matrix A. Think about how the determinant is evaluated.

(b) Observe that M? = nM in this case. The power series for ¢/ can therefore be
summed easily, to get
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—(e" —D M.
n

eM=1+

The matrix M with all M;; = 1 is an interesting one, and I will return to some other
properties of this matrix in Chap. 12, Sect. 12.3.6. >

8. Write out the power series for exp (M1)). Use the fact that M3 = —M to sum the
series. The result is just a linear combination of the three matrices I, M, and M>. »

9. The eigenvalues of M must be determined first: if ) is an eigenvalue of the matrix
M, then e*? is an eigenvalue of he rotation matrix R(n, ¢) = eM¥ Ttis straightfor-
ward to find the eigenvalues of M. They are 0, i, and —i. Hence the eigenvalues of
R, ¢) =eM¥ are 1, €%, and e 7%,

Remark In the present instance, the eigenvalues of M can be written down at once
from the fact that M® = — M. Anticipating what will be said in connection with the
characteristic polynomial of a matrix (Sect. 11.4.1), the Cayley—Hamilton Theorem
(Sect.11.4.3), and the minimal polynomial of a matrix (Chap. 12, Sect.12.3.5), 1
mention here that the cubic equation M*® + M = 0 is the lowest order polynomial
equation that the (3 x 3) matrix M satisfies. Hence M 3 + M must be both the min-
imal polynomial of M as well as its characteristic polynomial. It follows that its
eigenvalues are the roots of the equation A\* + \ = 0, namely, 0 and =i. >

10. You need to use the following property: If Ay, ..., A, are the eigenvalues of M,
then \] + A} + --- + A, = T, for each integer  from 1 to n. This statement is easily
seen to be true when M can be diagonalized by a similarity transformation S—that is,
when we can find a matrix S such that S~'M S = D, where D is a diagonal matrix
with the eigenvalues as its diagonal elements. But it remains valid even when M
cannot be diagonalized. We will return to this point in Chap. 12, Sect. 12.3.7. >

11. Use the fact that M and its transpose M have the same set of eigenvalues. »

12. This problem is the generalization of the (3 x 3) case considered in Sect. 11.2.2.
The matrix M? has elements equal to unity on the diagonal immediately above the
one on which M has nonzero elements, all its other elements being equal to zero.
In M3, this is pushed up further to the next diagonal, and so on. Finally, the matrix
M" has a single nonzero element, (M");, = 1, and M" is the null matrix for all
r > n. 4

13. The characteristic equation is A\(A\> 4+ o) = 0. Hence, by the Cayley—Hamilton
Theorem, M3 = —a?M. This helps you write both the exponential series for
exp (i M) and the binomial expansion of (zI — M)~! as linear combinations of the
matrices I, M, and M2. Collect the coefficients of M and M2 in each case and re-sum
the series concerned, to obtain the expressions quoted above.

Remark In the case of the binomial expansion of the resolvent Ry (z) = (1/z)(I —
M /z)~" in powers of M/z, you must assume that z is kept in the region |z| > a, so
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that the series converges absolutely. After re-summation of the coefficients of M and
M?, the closed-form expressions that result are applicable by analytic continuation
to the region |z| < « as well. Observe that Ry, (z) diverges at the eigenvalues of
M, namely, at the points z = 0, i, and —i«, as expected. These statements will
be better understood after a study of functions of a complex variable and analytic
continuation in Chaps. 22-26. >

14. Assume that the real symmetric matrix A can be diagonalized by an orthogo-
nal transformation. (This is discussed in Chap. 12, Sect. 12.3.4.) Thus A = S~'DS =
STDS, where S is an orthogonal matrix and D is a diagonal matrix with the eigenval-
ues of A as the diagonal elements. If Sx = y, the quantity x* A xreducesto y A yjz.
The change of variables of integration from (x;, ..., x,) to (y;, ..., y,) involves
the determinant of the Jacobian matrix. But you can write this down using the orthog-
onality property of S. We then have a product of decoupled Gaussian integrals in the
components of y. It only remains to note that the product of the eigenvalues of A is
equal to det A. >

15. (a) Using the summation convention for repeated indices,

(A, B)=Tr(A"B) = (A'B);; = (A");; Bji = A%, Bj; .
On the other hand,

(B, A) =Tt (B"A) = (B'A)ii = (B")ij Aji = Bj; Aji ,
which is obviously the complex conjugate of (A, B).
(b) Setting B = A, we have (A, A) = |A}; |2, which is positive definite unless each
Aj; =0. >

16. Use the Cauchy—Schwarz inequality [(A, B)|> < (A, A)(B, B), with B set
equal to 7, the (n x n) identity matrix. >

17. Use the Cauchy—Schwarz inequality for the elements U and A of the LVS of
(n x n) matrices. >



Chapter 12 ®)
More About Matrices g

12.1 Matrices as Operators in a Linear Space

12.1.1 Representation of Operators

As I have mentioned already, we may also view matrices as the representations of
operators acting on the elements of an LVS. In an n-dimensional Euclidean space
(denoted by R"), the natural basis is given by the ket vectors represented by the
column matrices

1 0 0
1 0
o) =0, 162=|O], ..., 1o =] : |- (12.1)
: : 0
0 0 1

This space is self-dual. The natural basis in the dual space is formed by the bra vectors
(¢i1]. These are represented by the row matrices that are the Hermitian conjugates of
the column matrices above:

(Gil=(10---0), (o] =(010---0), ..., (sl =(0---01). (12.2)

We know that a quantity like (¢;|¢;) is a pure number, i.e., a scalar. What sort
of quantity is an object like |¢;)(¢;|? It is an operator, as already pointed out in
Chap. 10, Sect. 10.2.1. From Eqgs. (12.1) and (12.2), it is obvious that this operator is
represented by an (n x n) matrix whose (i j)th element is unity, all its other elements
being zero. This simple property immediately suggests the following interpretation
of any general (n x n) matrix A:
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e Any (n x n) matrix A with elements a;; can be regarded as the representation of
an abstract operator A given by

A= aijldid . (12.3)

i=1 j=1

e The n? operators |¢; ) (¢ i1, where the indices i and j run from 1 to n, comprise the
natural basis for all operators acting on the vectors of the LVS.

The orthonormality of the natural basis immediately yields

aj; = (¢i|A|¢j>~ (12.4)

This should immediately tell you why an object like (¢;| A |¢;) is called (what else!)
amatrix element in quantum mechanics. This terminology is retained even when the
LVS is infinite-dimensional, and even when the basis set itself is a non-denumerable
or “continuous” basis.

e [ shall exploit this fact to use the same symbol for both the abstract operator and
its matrix representation, that is, the symbol A will be used both for A and for the
matrix representing it (in the natural basis, unless otherwise specified).

Which of the two is meant will be clear from the context, and no confusion should
arise. This is an abuse of notation, but it aids notational simplicity. I have already
made use of this convention in the case of the unit operator and the unit matrix,
denoting both objects by 7.

% 1. In a two-dimensional linear space, let { 1), |P2) } constitute an orthonormal
basis. Consider the operator

H =a(lo1)(o1] — 192)(d2] + 192) (1] + 1) (d2]),

where a is a real constant. Find the eigenvalues and eigenvectors of H, and express
the latter as linear combinations of |¢1) and |¢;).

12.1.2 Projection Operators

Given an orthonormal basis {|¢;)} in an LVS, we have just seen that the set of
operators {|¢;)(¢;|} forms a basis for the operators acting on the vectors in the LVS.
Of these, the n w “diagonal” members of the set are special. The operator

def.

Pj = o))l (12.5)




12.1 Matrices as Operators in a Linear Space 203

is a projection operator: when it acts on any vector in the LVS, it projects out the
part of the vector “along” the unit vector |¢;). Since (¢;|¢;) = 1 for each j, we have
(with no summation over the repeated index j)
2 _
P;=P;Pj=P;. (12.6)

Hence, for each j,
P; (I — P;) = 0 (the null operator). (12.7)

The projection operator P; is a Hermitian (actually, self-adjoint) operator,' i.e.,

;
Py =P;. (12.8)
The properties in Egs. (12.6) and (12.8) actually serve to define projection operators,
in general. Note also that

PiPi=0 if i#]j. (12.9)

The geometrical meaning of this relation is simple: if you project any vector along
a given basis vector |¢;), the subsequent projection of the result along any other
orthogonal direction is obviously zero. The completeness relation » j i)l =1
(Eq.(10.4) of Chap. 10, Sect. 10.2.1) is just the statement that

ij =1. (12.10)
J

Again, this is intuitively obvious.

I have mentioned in Chap. 10, Sect. 10.2.1 that the result of Gram—Schmidt
orthonormalization can be presented in a suggestive form using projection opera-
tors. Here it is: Eq. (10.7) for the orthonormalized ket |¢;) can be written as

(1= ) 1w
o) = por . (12.11)
Wil (1 = I P 1”2

As you ought to expect, the denominator in the right-hand side of Eq. (12.11) is just
the norm of the ket vector in the numerator. To establish this, you need to use the
self-adjointness property of projection operators, Eq. (12.8).

% 2. Verify that Eq. (10.7) can be re-expressed as in (12.11).

'T have yet to define the Hermitian conjugate of an operator, and what is meant by saying that
it is Hermitian or self-adjoint (and the subtle distinction between the two). That will be done in
Chap. 14, Sect. 14.2.3. For the present, take it to be that operator whose matrix representation is
the Hermitian conjugate (or complex conjugate transpose) of the matrix representing the operator
itself.
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12.2 Hermitian, Unitary, and Positive Definite Matrices

12.2.1 Definitions and Eigenvalues

Here is a quick recapitulation of a number of definitions, properties, and standard
results that are very useful in applications. We restrict ourselves to square matrices
of general finite order (n x n).

(i) A matrix R is orthogonal if R RT = I, where the superscript T denotes the
transpose. Hence RT = R~! for an orthogonal matrix.

(ii) A matrix H is Hermitian if H = H'. (Recall that the superscript T stands for
the complex conjugate transpose.)

It follows that the matrix element (¢| H|¢) is real for any ket vector |¢).

(iili) A Hermitian matrix P is positive definite [respectively, positive semi-definite]
if, for every |¢), the matrix element (| P|¢p) > O [respectively, > 0].

The concept of a positive semi-definite matrix extends to non-Hermitian matrices as
well, but I shall not go into this here.

(iv) If M is any matrix, the matrices MM ™ and M ' M are positive semi-definite.
(v) If P is a Hermitian positive semi-definite matrix, there exists a unique Hermitian
positive semi-definite matrix S such that S> = P, and conversely.

Thus, among all the matrices whose square equals a given positive semi-definite
matrix P, there is a unique positive semi-definite “square root” of P. The assertions
in (iv) and (v) extend to the more general case of positive semi-definite operators in
any LVS, both finite- and infinite-dimensional.

(vi) A matrix M is normal if it commutes with its Hermitian conjugate, i.e., if
MM =M'M.
(vii) A matrix U is unitary if U U T = [, the unit matrix. Hence UT = U~! for a
unitary matrix (see below).
(viii) A matrix M and its transpose M T have the same set of eigenvalues. Further,
if A is an eigenvalue of M, then \* is an eigenvalue of M.

Itis often helpful to think of Hermitian matrices and unitary matrices as (roughly) the
matrix analogs of real numbers and complex numbers of unit modulus, respectively.
Their respective eigenvalues are, in fact, such numbers:

(ix) The eigenvalues of a Hermitian matrix are real. A special case of this result is
that a symmetric matrix with real elements has real eigenvalues.

(x) The eigenvalues of a Hermitian positive semi-definite [respectively, positive
definite] matrix are all nonnegative [respectively, positive].

(xi) Every eigenvalue of a unitary matrix lies on the unit circle in the complex plane,
i.e., it is of the form ¢'?, where @ is a real number.
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Some additional remarks are in order. For a matrix of finite order, the left and
right inverses are identical. Hence the orthogonality condition R RT = I implies
automatically that RT R = I. Similarly, the unitarity condition U U™ = I implies
that UT U = I. This is not necessarily so for matrices of infinite order (and for
operators in general). A given infinite-dimensional matrix may have a left inverse
but not a right inverse, or vice versa. The conditions for unitarity are then U U =1
as well as U U = 1. If only one of these conditions is satisfied, we have a partial
isometry. If both conditions are satisfied, we have a total isometry, which is the
same thing as unitarity.

12.2.2 The Eigenvalues of a Rotation Matrix in d Dimensions

A proper rotation about the origin in d-dimensional Euclidean space (where d > 2)
can be represented by an (d x d) orthogonal matrix with real elements and determi-
nant equal to 1. Such matrices form a group, the special orthogonal group SO (d).
Now, it is obvious that a real orthogonal matrix is a special case of a unitary matrix.
Hence all its eigenvalues must lie on the unit circle in the complex plane. Recall,
for instance, the result found in Chap. 11, Sect. 11.3.2 for a rotation matrix in three
dimensions: the eigenvalues of the (3 x 3) rotation matrix R(n, 1), which is orthog-
onal and has real elements, are 1, ¢, and e~¥. The eigenvector corresponding to
the eigenvalue 1 is obviously n, the axis of rotation: every point on this axis remains
unchanged under the rotation.

e The existence of such a direction for each R is what enables us to identify a specific
axis of rotation with every rotation in three dimensions.

We are so accustomed to this property that its validity seems to be “intuitively obvi-
ous” for rotations in any number of dimensions, but that is not so. Consider, as the
simplest counter-example, rotations about the origin in two-dimensional space: there
is no ““axis of rotation” for a rotation in two dimensions! A rotation (about the origin)
of the coordinate axes through an angle « is represented by the (2 x 2) orthogonal

matrix )
Ra) = (cosa sin a)' (12.12)

sin «v cos «

The eigenvalues of R(«) are e=“. There is no eigenvalue equal to 1, and it is obvious
that no direction in the plane is left unchanged by the rotation.

These considerations can be extended to a proper rotation matrix R in an arbitrary
number of dimensions d > 2 as follows. As stated above, all the eigenvalues of
R must lie on the unit circle in the complex plane. Moreover, the product of all the
eigenvalues must be equal to the determinant of R, i.e., +1. Every complex eigenvalue
¢ must occur along with its complex conjugate e ¥, since all the coefficients in the
characteristic equation are real. The product of these two quantities is 1. It is obvious
that the eigenvalue —1, if it occurs, must occur an even number of times.
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It follows at once that, if d is even, +1 may or may not be an eigenvalue of R.
Hence there may or may not be a definite direction in the space along which points
are left unchanged by the rotation. On the other hand, when n is odd, it is clear
that the eigenvalue +1 must necessarily occur at least once, since the other (d — 1)
eigenvalues pair off, the product of each pair being 1. This means that there is always
at least one direction along which points are left unchanged by any rotation in a
d-dimensional space, when d is an odd integer > 3.

The foregoing discussion should serve as an indication that the rotation groups
in even- and odd-dimensional spaces differ significantly in their properties. Much
more can be said in this regard, but I shall not do so here. I reiterate that

e the existence of a unique axis of rotation associated with every rotation is an
exclusive property of three-dimensional space.

12.2.3 The General Form of a (2 x 2) Unitary Matrix

Sets of special kinds of matrices form groups under matrix multiplication, and these
groups are of great importance in physics. Foremost among these are orthogonal
matrices and unitary matrices. Thus all (n x n) orthogonal matrices with real ele-
ments form the orthogonal group O (n), while all (n x n) unitary matrices with
complex elements form the unitary group U (n). This group, and one of its sub-
groups, SU (n), have turned out to be of fundamental importance in atomic, nuclear,
and subnuclear physics, among other areas. For the present, let us restrict ourselves
to some properties of unitary (2 x 2) matrices, as these occur most frequently in
numerous applications.

Whatis the general form of a unitary (2 x 2) matrix? Consider an arbitrary (2 x 2)

matrix
_(a ﬂ - ot 'Y*
U= <fy 5), sothat U' = (ﬂ* 5*>. (12.13)

The elements o, 3, 7, and § are complex numbers.” Hence eight real parameters are
required to specify a given matrix. Requiring that U be unitary, i.e., imposing the
condition UU" = I yields relationships between these parameters and reduces the
number of independent ones. Note, further, that the determinant of a unitary matrix
of any finite order must have a modulus equal to unity: since det YU = det [ =1,
we have

det (U U") = (det U)(det U") = (det U)(det UT)* = |det U> = 1. (12.14)

Hence | det U| = 1, which implies that

2Here I have used the symbol U to denote the matrix representing a general element of the group
U (2), but this should not cause any confusion.
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det U = ¢ (12.15)

in general, where 6 is any real number. As you will see shortly, the general form of
a unitary (2 x 2) matrix is then given by

_ « B 2 2 _
U—(_eie g ema*>, where |af? +|]° = 1. (12.16)

Hence, if 1, «y [respectively, 81, (-] are the real and imaginary parts of « [respec-
tively, (], we have
af+a3+ B+ 6 =1 (12.17)

This provides one condition among four real variables, leaving three independent
parameters. Together with 6, these comprise the four independent parameters needed
to specify a general (2 x 2) unitary matrix.

% 3. Show that a general (2 x 2) unitary matrix has the form given in Eq. (12.16),
and that such matrices form a group.

The special unitary group SU (2): In the special case when the matrices are also
unimodular, i.e., when the determinant is equal to +1, the parameter § = 0. The
matrix in Eq. (12.16) then reduces further to

U= (fg f) where |af* + |8 = 1. (12.18)

Such unimodular unitary matrices also form a group by themselves, the special
unitary group SU (2). This is a subgroup of U (2).

e The group SU (2) is of fundamental importance in physics.

e It turns out that SU (2) is intimately related to SO (3), the group of rotations in
three dimensions. There is a 2-to-1 correspondence (or homomorphism) between
the two groups: there are two distinct elements of SU (2) corresponding to each
element of SO (3). I will discuss this relationship in Chap. 15, Sect. 15.3.3.

Number of independent parameters inan (n x n) unitary matrix: A general (n X n)
matrix with complex elements has 2n? independent real parameters. Requiring that
the matrix be unitary reduces this number to n2. Thus U (n) is an n?-parameter group.
That is, the dimensionality of the parameter space of the group U (n) is n’.

The determinant of any element of U (n) is a complex number of unit modulus,
i.e.,is of the form ¢/, where @ is a real number. If, further, we require that the matrices
be unimodular, then # = 0 and the number of independent real parameters decreases
by unity to n> — 1. Such matrices comprise the special or unimodular unitary group
SU (n), which is a subgroup of U (n). Thus the dimensionality of the parameter space
of the group SU (n) is n> — 1.

In physical applications (e.g., in quantum mechanics), certain ways of writing an
arbitrary unitary matrix are very useful. Among these are
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U=¢" and U=U+iH)"'(I—-iH), (12.19)

where H is Hermitian. Such representations are valid more generally for unitary
and Hermitian operators as well, as you might expect. In particular, consider the
Schrodinger equation for the state vector of a quantum mechanical system governed
by a time-independent, Hermitian Hamiltonian H:

d|V (¢
ih% = H|V (1)) (12.20)

The formal solution of this equation is
W (1)) = U(t, 10) |¥(ty)), where U(t, 1) = e (~H/R (12.21)

The time-development operator U (¢, t;) is a unitary operator.

Digression: An important generalization arises when the Hamiltonian has an explicit
dependence on time, although it remains Hermitian. The time-development operator
U is then no longer given by the simple exponential form in (12.21). Rather, it is a
so-called time-ordered exponential, given by an infinite series:

U(t, ty) = T{exp [% /ttdt’H(t/)]}

& : t 1 [

def. —I\"

= I+ (—)/dt/dt---f dt, Hty) H(tp) --- H(t,).
nE:l N . 1r0 2 . (t) H(t2) (tn)

(12.22)

But U remains a unitary operator, preserving the inner product (W (¢)|W (1)), i.e.,
maintaining the conservation of total probability.

12.3 Diagonalization of a Matrix and all That

If a square matrix M is in a diagonal form, the entries on the principal diagonal are,
of course, its eigenvalues. But it is a common misconception to imagine that (i) you
need to be able to reduce M to diagonal form in order to find its eigenvalues, or that
(i) M can be diagonalized in all cases. Neither of these statements is true. Matrices
play such a prominent role in so many applications (including quantum mechanics),
that it is worth taking a quick look at some relevant features from linear algebra. For
details, refer to any text on linear algebra and matrix analysis.

Much of what follows is customarily discussed in terms of general rectangular
matrices and, even more generally, in the context of linear operators. But let us restrict
ourselves here to square matrices of finite order.
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12.3.1 Eigenvectors, Nullspace, and Nullity

Recall the meaning of an eigenvector and eigenvalue of an arbitrary (n x n) matrix
M. If the homogeneous equations

Mu=)u and V' M = \v" (12.23)

have nontrivial (i.e., nonzero) solutions for the column vector u and the row vec-
tor vI for some particular value of ), then u is a right eigenvector and vT is a
left eigenvector of M corresponding to the eigenvalue A\.* Each u is equal to the
corresponding v if and only if M is a symmetric matrix. The condition for the homo-
geneous equations (12.23) to have nontrivial solutions is precisely the characteristic
equation det (A — M) = 0 (Eq.(11.42) of Chap. 11, Sect. 11.4.1). As noted there,
this equation is guaranteed to have n roots (some of which may be repeated or mul-
tiple roots) in the field of complex numbers. These roots comprise the spectrum of
the matrix M.

e The problem of finding the spectrum of a matrix is therefore just a matter of
finding the roots of an nth order polynomial equation in A. It has nothing to do
with diagonalizing M.

It is obvious from the characteristic equation that O is an eigenvalue of M if and
only if det M = 0. In that case M has at least one nontrivial right eigenvector u that
is “annihilated” by M—that is, M acts upon the column vector u to produce the null
vector, according to M u = 0. As you know, the matrix M is then singular, and the
matrix inverse M ~! does not exist—i.e., the matrix M is not invertible.

The equation M u = 0 may have more than one solution. That is, there may
be more than one eigenvector corresponding to the eigenvalue O of the matrix M.
The span of these eigenvectors is called the right nullspace of the matrix. The
dimensionality of the nullspace is called the nullity of the matrix, and may have any
integer value from O to n. As I have mentioned, M can also be regarded as a linear
operator in the LVS of column vectors of order n, because it acts on column vectors
to produce other column vectors in the same space. In this view, M is a linear map.
The set of vectors that it maps to the null vector is precisely the set of its eigenvectors
corresponding to eigenvalue 0. In this context, this set is called the kernel of the
linear operator (or map).

There is another way to understand the right nullspace of an (n x n) matrix M.
Each row of the matrix is an n-component object, like a row vector. Let us therefore
write

w® = My My ... M) (12.24)

31 reiterate that we are considering finite-dimensional matrices here. In the case of infinite-
dimensional matrices, it is possible for a matrix to have right eigenvectors but no left eigenvectors,
or vice versa.
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for the row vector whose components are the elements of the ith row of M. The
vectors {w) |1 <i < n} span the row space of the matrix. If there is a column
vector u satisfying M u = 0, we have

M;ju; =0, or w®.u=0 foreach i. (12.25)

Therefore the vectors of the right nullspace are orthogonal to the vectors spanning
the row space.

e The right nullspace is the orthogonal complement of the row space of a matrix.
Similarly, we have the column space of M, which is the space spanned by its columns.

e The left nullspace of M is the orthogonal complement of its column space.
e As you might guess, the left and right nullspaces of a (square) matrix have the
same dimensionality.

Note that det M = 0 implies that M cannot have # linearly independent rows.* The
usual operations used in elementary algebra to simplify determinants involve adding
or subtracting multiples of any row to any other row. These operations do not change
the value of the determinant. If, by these operations, we are able to reduce all the
elements of any row to zero, the determinant vanishes. But this is exactly the same
thing as saying that the row concerned is linearly dependent on other rows.

In contrast, if det M # 0O, then the matrix M is invertible. It has no eigenvalue
that is equal to zero. Its n rows are linearly independent of each other. They span the
n-dimensional LVS of row vectors. Hence they form a basis in that LVS.

Caution: Sayingthatan (n x n) matrix has n linearly independent rows (or columns)
is not the same thing as saying that the matrix has n linearly independent eigenvec-
tors !

12.3.2 The Rank of a Matrix and the Rank-Nullity Theorem

The rank of a matrix is a fundamental concept in matrix analysis. There are several
equivalent definitions of the rank of an (n x n) square matrix M.

(i) The row rank of M is the maximal number of linearly independent rows in M.
Hence it is the dimensionality of the row space of M.
(i) The column rank of M is the maximal number of linearly independent columns
in M. Hence it is the dimensionality of the column space of M.
(iii)) The row rank and column rank of a (square) matrix are always equal to each
other. Hence we may simply call it the rank of the matrix.
(iv) The rank of M is the order of the largest nonvanishing minor in M.

40r columns. The statements that follow are valid if “row” is replaced with “column”. Recall also
that the value of a determinant does not change if its rows and columns are interchanged.
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(v) Treating M as a linear operator in the LVS of column matrices, the rank of M
is the dimensionality of the image of the map.

The rank of M can be any integer from 1 to n. (Only the null matrix has rank 0.)

e If M is of full rank n, then it has n linearly independent rows (or columns),
det M # 0, and it is invertible and vice versa.

e Ifdet M = 0, then M has less than n linearly independent rows (or columns), and
has a rank between 1 and (n — 1). It is a rank-deficient matrix.

The rank-nullity theorem is an important relationship connecting the nullity of an
(n x n) matrix and its rank:

The rank of M + the nullity of M = n. (12.26)

it is easy to see heuristically why this should be so: the rank is the dimensionality of
the row space of a matrix, while the nullity is the dimensionality of the orthogonal
complement of the row space. In mathematics, they like to write the theorem as

dim (im M) + dim (ker M) = n, (12.27)

where “im” and “ker” stand for the image and kernel, respectively, of the linear map
M. Note that the theorem corroborates the fact that the dimensionality of the left
nullspace of a matrix is equal to that of its right nullspace, since its row rank is equal
to its column rank.

Specific examples illustrating these concepts will follow shortly, in Sect. 12.3.6.

12.3.3 Degenerate Eigenvalues and Defective Matrices

Simple roots of the characteristic equation det (M — AI) = 0 correspond to nonde-
generate eigenvalues. For every nondegenerate eigenvalue there is an eigenvector,
and these eigenvectors are linearly independent of each other.

Multiple or repeated roots of the characteristic equation are degenerate eigenval-
ues, and require special attention. The number of times a degenerate eigenvalue
occurs, say 7, is called its algebraic multiplicity. The crucial point is the following:

e There may not exist r,, linearly independent eigenvectors corresponding to the
eigenvalue i, but only s, of them, where 1 <s, < r,. This number s, is the
geometric multiplicity of the eigenvalue .

If an (n x n) matrix has a full set of n linearly independent eigenvectors,” we
could use them to form a basis (in which to represent both column vectors in the LVS
as well as other matrices or operators). But when we have a degenerate eigenvalue

31t is important to note that I am now referring to the linearly independent eigenvectors of the matrix,
and not to its linearly independent rows or columns.
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with s, < 7, this is no longer possible. In such a case, we must also find the so-
called generalized eigenvectors of M (see below), and use them along with the other
eigenvectors to form a basis.

e An (n x n) matrix that has fewer than n linearly independent eigenvectors is called
a defective matrix.

e Defective matrices always have less than n distinct eigenvalues, i.e., some eigen-
values are repeated.

e The converse of the statement just made is not necessarily true! A matrix that has
less than n distinct eigenvalues, i.e., a matrix that has some repeated eigenval-
ues, may still have n distinct eigenvectors. An example will be given shortly, in
Sect. 12.3.6.

Exactly how the generalized eigenvectors are to be found, is a separate question.
For instance, if s, = 1, there is just one eigenvector corresponding to the eigen-
value p. This eigenvector is the solution of (M — pI)u = 0, while the general-
ized eigenvectors are the nontrivial solutions of the equations (M — p 1)/ u = 0 for
Jj=2,3, ..., r,.1donot go into this aspect any further, as it is not our main concern
here.

12.3.4 When Can a Matrix Be Diagonalized?

We are ready, now, to turn to a basic question in matrix analysis:
e When can an (n x n) matrix M be diagonalized by a similarity transformation?

That is, under what conditions can a nonsingular (n x n) matrix S be found such
that S~'MS = A, where A is a diagonal matrix with the eigenvalues of M as its
diagonal elements?

The answer is actually a special case of a whole class of results that go under
the general name of matrix decomposition. This term refers to the possible ways in
which a matrix can be “factorized”, e.g., written as a product of matrices with special
properties such as symmetry, unitarity, etc.—analogous, for instance, to the way any
complex number z can be written as the product of a nonnegative real number r and
a complex number of unit modulus, e,

e The diagonalization of a matrix by a similarity transformation is one such form of
factorization.

I will not list the various decompositions and the conditions under which they are
possible. Instead, I quote a number of results that are useful in physical applications,
followed by some illustrative examples in Sect. 12.3.6. Some comments regarding
other forms of matrix decomposition are made in Sect. 12.3.8.

(a) Let us start with a sufficiency condition for a matrix M to be diagonalizable.

e An (n x n) matrix M can be diagonalized if it has n distinct eigenvalues.
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e In other words, all the roots of its characteristic equation must be simple roots.

Remember that the above is a sufficiency condition, not a necessary one. In one of
the examples given below, you will encounter a matrix whose characteristic equation
has a repeated root, and yet the matrix is diagonalizable.

(b) Next, let us consider a necessary and sufficient condition for diagonalization by a
special kind of transformation, namely, a unitary transformation. This is important
in several physical applications, notably in quantum mechanics. Recall that a matrix
M is normal if M M" = M M. Examples of normal matrices are

Hermitian matrices (M = M),

skew-Hermitian matrices (M' = —M),

— unitary matrices (MM = MM™ = I),

and the counterparts of the above among matrices with real elements—namely, real
symmetric matrices, real antisymmetric matrices, and real orthogonal matrices,
respectively.

A normal matrix enjoys the following property:

e Every normal matrix M can be diagonalized by a unitary transformation, U MU,
where UT = U1,

A corollary of this result is that

e every real symmetric matrix M can be diagonalized by an orthogonal transforma-
tion, RTM R, where RT = R~

Owing to the “necessary and sufficient” nature of the condition under discussion, the
converse result is also valid:

e Given a matrix M, if there is a unitary matrix U such that UTMU is a diagonal
matrix, then M must be a normal matrix.

(c) Now let us turn to a necessary and sufficient condition in the general case.

e An (n x n) matrix M is diagonalizable by a similarity transformation if, and only
if, it has n linearly independent eigenvectors. In other words, M must not be
defective.

A defective matrix cannot be diagonalized by a similarity transformation.

12.3.5 The Minimal Polynomial of a Matrix

The condition for diagonalizability can be phrased in another way. This involves the
concept of the minimal polynomial of a matrix.

e Every (n x n) matrix M has a unique minimal polynomial p,;()\) of some degree
m < n, such that the polynomial equation py, (M) = 0 is satisfied.
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No polynomial in M that is of order lower than m can vanish identically. The minimal
polynomial pys () of amatrix M is distinct from its characteristic polynomial Py ()
in some cases, while in others it is the characteristic polynomial itself.

e A matrix is diagonalizable by a similarity transformation if and only if all the roots
of its minimal polynomial are simple roots, i.e., the equation p,(A) = 0 has no
repeated roots.

I shall not go into the way the minimal polynomial of an (n x n) matrix is deter-
mined. It is obvious that its degree cannot be greater than n, in any case. A notewor-
thy property is that py, () is always a factor of the characteristic polynomial Py ().
Hence all the roots of the equation py;(\) = 0 are included in the set of eigenvalues
of M. In fact, a stronger result can be established: the roots of py (\) = 0 exhaust
the set of eigenvalues of M, but (obviously) with lower algebraic multiplicities, in
general. This implies at once that, if none of the eigenvalues of a matrix is a repeated
eigenvalue, then the minimal and characteristic polynomials of that matrix are the
same, apart from an overall sign. The converse is not necessarily true: a matrix may
have repeated eigenvalues, and yet its minimal and characteristic polynomials may
be essentially the same. We will come across examples of this possibility shortly.

Recall, now, the question posed in Chap. 11, Sect. 11.4.3, after the Cayley—
Hamilton Theorem was stated. Suppose an (n x n) matrix M is found to satisfy
an nth order polynomial equation as in Eq.(11.52). Does this equation, with M
replaced by A as in Eq. (11.53), necessarily have to be the characteristic equation of
M ? The answer is now obvious: of course not! Since py (M) = 0, left-multiplication
of both sides by any arbitrary polynomial in M will still yield zero. In particular,
you can left-multiply by any polynomial in M of order (n — m), and produce an nth
order polynomial equation satisfied by M. There is therefore no “converse” of the
Cayley—Hamilton Theorem in this sense.

On the other hand, if you know that the eigenvalues of M are distinct, then the
minimal polynomial py, is the characteristic polynomial Py, itself (apart from an
overall sign), as already stated. In that case, given an nth order polynomial equation
for M like Eq.(11.52), you can assert that Eq.(11.53) is indeed the characteristic
equation whose roots yield the eigenvalues of M. This is why I asserted that the
eigenvalues of the (3 x 3) matrix M = i J - n encountered in Chap. 11, Sect. 11.3.2,
were 0, i, and —i, based on the fact that M> + M = 0 in that case.

12.3.6 Simple Illustrative Examples

I now apply the foregoing to some simple but very instructive examples, spelling out
the details.

Example (i): Consider the matrix

01
M = (o o) . (12.28)
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The eigenvalues are 0 and 0. However, there is only one eigenvector corresponding
to this repeated eigenvalue, namely, ((1)) (apart from a constant factor). The span of
this eigenvector is one-dimensional (the x-axis in R?, for instance). Therefore the
nullity of M is 1. Its rank is also 1, because the row space is just the span of the row
vector (0 1). (The other row vector is just the null vector.) Alternatively, we may
note that the order of the largest nonvanishing minor is 1, so that the rank is 1. Hence
the rank-nullity theorem reads, in this case, 1 + 1 = 2.

M has only one eigenvector, and is therefore a defective matrix. It cannot be
diagonalized by a similarity transformation. The minimal polynomial in this case
is the characteristic polynomial itself: p(M) = P(M) = M?. The equation \> = 0
has a double root, corroborating the fact that the matrix cannot be diagonalized.

Example (ii): Consider the matrix

11
M = (o 1). (12.29)

The matrix is upper triangular, so that the eigenvalues are its diagonal elements, 1
and 1. The rows vectors (1 1) and (0 1) are obviously linearly independent. Hence
the rank of M is 2. There is no zero eigenvalue, so that the nullity is 0. Hence the
rank-nullity theorem is satisfied, 2 + 0 = 2.

M has only one eigenvector, which is proportional to (} ). Itis therefore a defective
matrix, and hence not diagonalizable. Since M is not a multiple of the unit matrix, it
cannot satisfy a linear equation of the form aM + bl = 0. Once again, the minimal
polynomial is the characteristic polynomial itself, p(M) = P(M) = (M — I)*. The
fact that the equation (A — 1)?> = 0 has a double root corroborates the conclusion
that the matrix cannot be diagonalized.

% 4. Show that the conclusions drawn in Example (ii) above extend, foreveryn > 2,
to the following case: an (n x n) upper triangular matrix in which all the elements
on the principal diagonal and above it are equal to unity, and all other elements are
zero. That is,

1100---00
0110---00
0011---00
M=\..._. .
0000---11
0000---01

Example (iii): Consider the matrix

1001
1100
M = o110l (12.30)

0011



216 12 More About Matrices
It is easily shown that det M = 0. The characteristic equation
A=D*=1=0

immediately yields the eigenvalues 2, 14 i, 1 — i, and 0. The corresponding eigen-
vectors are obtained quite easily. They are proportional to

1 1 1 1
1 —i i -1
' and ik (12.31)
1 i —i —1

respectively. It is obvious that the nullity is 1 (there is a single nontrivial eigenvector
corresponding to the eigenvalue 0). Labeling the row vectors of M as «, (3, 7y, and
d, respectively, it is easy to see that o — 3 + v — 6 = 0. Therefore any one of the
four row vectors can be written down as a liner combination of the other three, i.e.,
there are three linearly independent rows. Hence the rank of M is 3. The rank-nullity
theorem is satisfied as 3 4 1 = 4. There are four linearly independent eigenvectors,
and the matrix is not defective. It can be diagonalized by a similarity transformation.

Observe the way in which the elements of the first row of the matrix in Eq. (12.30)
“go around” one step at a time to produce the other rows. This is an example of a
circulant matrix. Circulant matrices occur frequently in applications, and comprise
an important class of matrices. I shall return to them in Sect. 12.3.9.

% 5. Let S be the matrix formed by the eigenvectors listed in Eq. (12.31), i.e.,

11 1 1
1 —i i-1
S=11_1-1 1
1 i —i—1

Show explicitly that the matrix M given in Eq. (12.30) is diagonalized by the simi-
larity transformation S~' M S.

Example (iv): This is an important example that should help dispel some common
misconceptions. Consider the (n x n) Hermitian matrix M with every element equal
to unity, i.e.,
11---1
11---1
M=1.. .| (12.32)

11---1
You have already encountered this matrix in Chap. 11, Sect. 11.2.2, where its expo-
nential was evaluated.
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M is areal symmetric matrix, which suffices to ensure that it can be diagonalized
by an orthogonal transformation. Equivalently, it has » linearly independent eigen-
vectors. All the rows of M being identical to each other, there is only one independent
row vector, (1 1 ... 1). Hence the rank of M is 1. (The order of the largest nonvan-
ishing minor is also easily seen to be just 1.) Its nullity must therefore be (n — 1). In
other words, 0 is an (n — 1)-fold repeated eigenvalue of M, with an equal number
of linearly independent eigenvectors. The characteristic polynomial of the matrix is

Pu(N) = N"" A= n). (12.33)

It follows that the remaining eigenvalue is just n. We could have written this down
by inspection, by observing that M? = nM. Hence the minimal polynomial is the
quadratic

pm(N) = A\ —n), (12.34)

whose roots are 0 and n. These are simple roots, corroborating the fact that M can
be diagonalized. So we have, here, a matrix that is highly rank-deficient, and has
(n — 1) eigenvalues equal to zero. And yet it is not a defective matrix.

% 6. Consider the matrix M given by Eq. (12.32).

(a) Find n linearly independent eigenvectors corresponding to the n eigenvalues of
M.

(b) Apply the Gram—Schmidt orthonormalization procedure given in Chap. 10, Sect.
10.2.1, to obtain an orthonormal set of eigenvectors of M.

% 7. Consider the Hermitian matrix

1 0 0

3 1
H=10 35—
1 3

0-3 3

(a) Find the rank, nullity, eigenvalues, and eigenvectors of H.Construct an orthonor-
mal basis using the eigenvectors.

(b) Obtain the similarity transformation which diagonalizes H . Is the transformation
matrix orthogonal?

12.3.7 Jordan Normal Form

For the sake of completeness, I state a general result that is applicable whether or
not a matrix can be diagonalized by a similarity transformation.

e Every (n x n) matrix can always be brought to the so-called Jordan normal form
(also called the Jordan canonical form) by a similarity transformation.
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This form is an upper triangular matrix in which the eigenvalues occur along the
diagonal, and the super-diagonal just above the principal diagonal has entries that are
either O or 1. The matrix is in block-diagonal form, composed of Jordan blocks. Each
Jordan block is a square upper triangular matrix, with a particular eigenvalue as its
diagonal elements, unity as each element of the super-diagonal, and zero everywhere
else.

Here is an example. Consider a (6 x 6) matrix with a two-fold degenerate eigen-
value |, a simple or nondegenerate eigenvalue ), and a three-fold degenerate
eigenvalue \3. Suppose there is only one eigenvector for each eigenvalue. By a sim-
ilarity transformation, such a matrix can always be cast (up to a permutation of the
three Jordan blocks) in the Jordan normal form

Al
0 A
0

o O

oo o
o X —loloo

>

>
Qo

(12.35)

— OO O

0
0
0
0

S O O
S OO

0
0 3

This form comprises three Jordan blocks: a (2 x 2) block corresponding to the eigen-
value A}, a (1 x 1) block for the eigenvalue \,, and a (3 x 3) block for the eigenvalue
Az.

In general, a given eigenvalue may have more than one Jordan block associated
with it. The number of such blocks is the geometric multiplicity of the eigenvalue.
The size of each block is determined by a more detailed procedure which will not
be described here. But the sum of the sizes of all the Jordan blocks corresponding
to a given eigenvalue is equal to the algebraic multiplicity of the eigenvalue. This
provides us with yet another way of stating the condition for the diagonalizability of
an (n x n) matrix:

e A matrix can be diagonalized by a similarity transformation if and only if the
geometric multiplicity of each eigenvalue is equal to its algebraic multiplicity.

When that happens, all the Jordan blocks reduce to (1 x 1) blocks, and the Jordan
normal form becomes a diagonal matrix.

e A diagonal matrix is thus a special case of the Jordan normal form.

Note, finally, that the diagonal elements of the rth power of a matrix in Jordan
normal form has the rth power of the eigenvalues on its diagonal elements. This
means, in effect, that the trace of the rth power of any matrix is just the sum of the
rth powers of its eigenvalues. This establishes the assertion made in Chap. 11, Sect.
11.4.1: namely, that the coefficients of the characteristic equation of any (n X n)
matrix can be expressed in terms of the traces Ty = Tr M, T, = Tr (M T, =
Tr (M").
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12.3.8 Other Matrix Decompositions

I have already stated that diagonalization by a similarity transformation is just one
of several possible matrix decompositions. Some other important matrix decompo-
sitions that are possible for a general (n x n) matrix are as follows.

Decomposition into triangular matrices: Any (n x n) matrix M can be written as
the product of a lower triangular matrix 7, and an upper triangular matrix Ty, i.e.,

M=T,Ty. (12.36)
Schur decomposition: Any (n X n) matrix can be written in the form
M=U'TU, (12.37)

where U is a unitary matrix and 7 is an upper triangular matrix. The diagonal
elements of T are the eigenvalues of M.

Singular value decomposition: Any (n x n) matrix can be written in the form
M=U] DU, (12.38)

where U, and U, are unitary matrices, and D is a diagonal matrix. The elements of D
are not the eigenvalues of the matrix, but its singular values. These are the positive
square roots of the eigenvalues of M M. The matrix M M is Hermitian and positive
semi-definite, that is, all its eigenvalues are real, nonnegative numbers. Its positive
eigenvalues are also eigenvalues of the matrix MM,

12.3.9 Circulant Matrices

As I have mentioned already, the matrix in Eq. (12.30) of Sect. 12.3.6 is a circulant
matrix. These matrices have very interesting and well-studied properties.

Given a set of n numbers ay, ay, ..., a,—1,a general (n x n) circulant matrix is
of the form
ap ay az ---ay—2 Ap—1
ap—1 4o Ay ---day—3 ap-2
dp—2 dp—1 Qo -+ Ap—4 Ap_3
M=1 . . .. . (12.39)
a az d4--- do 4

ay daz a4z ---dp—1 4o
or

My = {“f—" for i < /. (12.40)
aj_jpn fori > j.
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Let ‘
wp =™k =0,1,...,(n — 1) (12.41)
denote the nth roots of unity. Then the eigenvalues of M are A\g, A, ..., A\,—, where
n—1
,\k:Za,w;; k=0,1,...,n—1). (12.42)
r=0

It is obvious that all the powers w; of each wy can be expressed in terms of the
set {w; |l =0,1,...,(n— 1)} itself. The first eigenvalue is just the sum of the ele-
ments of the first (or any other) row, i.e., A\¢g = a9 + - - - + a,—;. The right eigenvec-
tor corresponding to the eigenvalue ), is given by the transpose of the row vector
(1 Wi Wi w;’_l). Since wy = 1, the eigenvector corresponding to Ay is just the
uniform column vector with each element equal to 1.

Some other important properties of circulant matrices (of a given order) are as
follows.

e The product of two circulant matrices is again a circulant matrix.
e Any two circulant matrices commute with each other.
e If M is a circulant matrix, so is M.

e Hence MM™ = M™M, so that every circulant matrix is a normal matrix. There-
fore it can be diagonalized by a similarity transformation (in fact, by a unitary
transformation).

e Since the eigenvectors of a circulant matrix do not depend on the values of its
elements, all circulant matrices (of a given order order n) can be diagonalized by

the same similarity transformation. Thus SMS~! = A = diag (Ao, A\,..., A\u_1),
where
1 1 I -1
1 w1 Wy ot Wh—1
s—=|1 o @ —wp ] (12.43)
I R

% 8. Let0 < p <1,andg =1 — p. The (n x n) tridiagonal circulant matrix
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is encountered in certain applications, e.g., in the problem of a biased random walk
on a chain of # sites arranged in a ring. (A specific instance is given in Sect. 12.3.10
below.) Find the rank of M, its nullity, and its set of eigenvalues.

12.3.10 A Simple Illustration: A 3-state Random Walk

Here is an illustration involving a very simple instance of a random walk that uses
the properties of a circulant matrix. I will consider random walks in greater detail
in the sequel, especially in Chap. 21, Sect. 21.5.2. But the example that follows can
be understood on its own. Moreover, this example and its generalizations serve as
useful models in diverse physical situations.

Imagine a system that can be in any one of three states, labeled by j (= 1,2 or
3). The system jumps randomly from any state to either of the other two states, with
the following probabilities: the a priori probability of a jump from state 1 to 2, or 2
to 3,or3to 1, is given to be p, where 0 < p < 1. The a priori probability of a jump
in the reverse direction, i.e., from 3to2,or2to 1l,or 1 to 3,is ¢ = 1 — p. It helps
to picture the states 1, 2, and 3 as sites on a ring, and the jumps from one state to
another as a random walk between the sites (Fig. 12.1).

Let P(j, t) denote the probability that the system is in state j at time ¢. Let A be the
transition rate, i.e., the probability, per unit time, that the system jumps from any state
to any other state. We now assume that the jumps from one state to another constitute
a stationary Markov process. (This class of random processes will be discussed in
Chap. 21, Sect. 21.2.) The probabilities P (j, t) then satisfy the following set of rate
equations or master equations:

Fig. 12.1 Biased random

walk on a ring with 3 sites. ;
p and ¢ = 1 — p denote the
site-to-site jump p p
probabilities
q q
2@ [ I
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%P(l, n=A-P1,1)+qgPQ2.1)+pP3,1)],
%P(z, 1) =XpP(,1)—P2,t)+q P31, (12.44)
%P(S, 1) =AgP(,t)+pPQ2,1t)— P3,1)].

The positive and negative terms on the right-hand side of each equation in (12.44)
can be understood as “gain” and “loss” terms contributing to the rate of change of
the probability concerned. I will return to this aspect in Chap. 21, Sect. 21.2.2, to
explain how such rate equations arise.

In order to solve Eq. (12.44), it is convenient to let P(¢) denote the column vector
whose jth row is P(j, t). Then Eq. (12.44) can be written in the compact form

-1 q p

dP(t

di) = WP(t), wherethematrix W=X| p—-1 g¢q]. (12.45)
g p-—1

W is called the transition matrix. The formal solution to this equation, for any given
initial probability distribution P(0), is given by

P(t) ="' P(0). (12.46)

The problem thus reduces to finding the exponential of the transition matrix.
We can do this explicitly. Observe that W is a circulant matrix. Hence it is a
normal matrix, and can be diagonalized. The eigenvalues of W are

=0, A\ =(=14+qw"+pw)A, = (=1+qgw+ pw)A, (12.47)

where w = ¢?™/3 is a cube root of unity. The matrix comprising the corresponding

right eigenvectors of W as its columns is

1 (! 1* 1
S= % i c:)u :)u* . (12.48)
S diagonalizes W by a similarity transformation, i.e.,
ST'WS = diag (Ao, A1, A2). (12.49)
It follows that
ST'wns = diag (AL, NI, AD). (12.50)

Hence
§7te' S = diag (', M, ). (12.51)
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Therefore
eM 0 0
=50 e 0 |57 (12.52)
0 0 M

For definiteness, let us take the system to be in state 1 (say) at + = 0. Therefore
P0) = (1 0 O)T. Then, at any time ¢ > 0, we find

(L0 = 3+ 32 cos [ L(p — qu ]
PQ,t) =14 2e7 N2 cos [L(p—g)t — x|, (12.53)
P(3,1) =1+ 2732 cos %g(p -t +37|.

Itis easily checked that P(1,0) =1, P(2,0) = P (3, 0) = 0 asrequired. Moreover,
as t —> oo, every P(j,t) exponentially approaches the stationary or equilibrium
Value 2, with a relaxation time 2)\ !, The directional bias, characterized by the
dlfference (p — ¢q),leads to an oscﬂlatory approach of the probabilities (as functions
of time) to this common stationary value. In the absence of such a bias (i.e., when
p=q= %), each probability tends monotonically to its equilibrium value.

% 9.Work out all the steps leading from Eq. (12.44) to the solutions given by
Eq. (12.53).

12.4 Commutators of Matrices

12.4.1 Mutually Commuting Matrices in Quantum
Mechanics

The question of matrix diagonalization has a bearing on quantum mechanics, where,
as you know, physical quantities are represented by operators. The latter are often
represented by matrices.

Let us consider the case of finite-dimensional matrices. Let A, B, and C be three
(n x n) matrices. Given that the commutators [A, B] = 0 and [B, C] = 0, it does
not necessarily follow that [A, C] = 0. In other words, the commutation property
is not transitive. It is of interest in quantum mechanics to consider sets of mutually
commuting matrices (more generally, mutually commuting operators acting on the
vectors of some LVS).

e If the members of a set of (n x n) Hermitian matrices commute with each other,
they can be diagonalized simultaneously, i.e., by the same unitary transformation
matrix U.

This is a special case of a property that is of primary importance in quantum
mechanics.
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— Given a quantum mechanical system, one looks for a maximal set of mutually com-
muting self-adjoint operators® representing the physical observables pertaining to
the system.

— This set is guaranteed to have a complete set of common eigenvectors that forms a
basis in the LVS of the states of the system.

— It is advantageous to make sure that the Hamiltonian operator H of the system
belongs to this maximal commuting set, because H governs the time evolution of
the system. The basis states are then stationary states, i.e., eigenstates of H.

% 10. You will find it most instructive to work out the following exercise right up to
the last step. Consider the two Hermitian matrices

101 o]
A=1]000] and B=|1 0 -1
101 1-1 2

(a) Verify that they can be simultaneously diagonalized.

(b) Find the common eigenvectors of A and B.

(c) Construct the unitary transformation S that diagonalizes the two matrices, such
that S~'AS and S~! BS are diagonal matrices.

Two further points ought to be noted, as they are directly relevant to quantum
mechanics. They also help dispel some common misconceptions. I make one of
these remarks here.

e When two operators (or matrices) do not commute with each other, it is still possible
for them to have a common eigenvector or a number of common eigenvectors. But
these common eigenvectors cannot comprise a complete setin the space concerned.

An explicit example of this possibility will be given in Chap. 14, Sect. 14.4.2. The
second remark is also deferred to the same place.

12.4.2 The Lie Algebra of (n x n) Matrices

This is an appropriate place to introduce the idea of a Lie algebra. Recall that this
concept has already been mentioned in Chap. 5, Sect. 5.1.4, in connection with the
cross product of two vectors in three-dimensional Euclidean space. It has also been
indicated in Chap. 11, Sects. 11.1.2 and 11.3.1, that the generators J; of infinitesimal
rotations in three dimensions form a Lie algebra. The importance of Lie algebras
lies in the fact that they generate Lie groups, which underlie various continuous
symmetries and invariances in physics. This process involves the exponentiation of

6 As mentioned earlier, in the case of finite-dimensional matrices (which is what we are concerned
with here), “self-adjoint” is the same as ‘Hermitian’. The distinction between Hermitian and self-
adjoint operators in the general case will be explained in Chap. 14, Sect. 14.2.3.
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the so-called infinitesimal generators of the group. You have already seen an example
of such an exponential form in the case of the rotation group, as discussed in Chap.
11, Sects. 11.3.1 and 11.3.2 (see, in particular, Eq. (11.28)).

A Lie algebra is a special kind of linear vector space. Its elements not only form
an LVS but also possess a binary operation (called the Lie bracket) involving any
two elements of the set, such that the result of the operation is also an element of the
set. Further, this operation’ has a specific set of properties, listed below. As always,
I consider only the simplest cases, omitting formal mathematical definitions and
generalizations. The linear vector spaces we are concerned are those in which the
scalar multipliers of the elements of the LVS are either real numbers or complex
numbers. It is convenient, for the moment, to denote the elements of the LVS by
«, B, 7, .... The binary operation will be denoted by o. Thus, (a0 ) is also an
element of the set, and so on. The special properties demanded of this operation are
as follows:

(i) Anti-symmetry: The operation is antisymmetric under the interchange of the
pair of elements. That is,

(@aof) =—(Boa). (12.54)

(ii) Associativity: The operation is associative. If a, b, and c are scalar multipliers
of elements in the LVS,

aoBf+cy)=b(aof)+c(aoy), (aa+bB)oy=a(aoy)+b(Bo7).
(12.55)

(iii) Jacobi identity: The Jacobi identity is satisfied:

ao(Boy)+PBo(yoa)+vo (o) =0. (12.56)

The most familiar example of a Lie algebra is provided, as I have already mentioned
in Chap. 5, Sect. 5.1.4, by “ordinary” vectors in three-dimensional Euclidean space,
R3. The cross product of any two such vectors a and b satisfies the anti-symmetry
property (a x b) = —(b x a), as well as the triple cross product identity, Eq. (5.20).
The binary operation in this Lie algebra is therefore the cross product. The generators
of this Lie algebra are, as you might guess, the three unit vectors (e, ey, e;).

The second important example of a Lie algebra is provided by square matrices
of any given order. As you know, the set of (n x n) matrices forms an LVS. Let
A, B, C be (n x n) matrices. The commutator of two matrices clearly satisfies the
anti-symmetry property

[A, B]=AB — BA = —[B, A]. (12.57)

The associativity property (12.55) is also obviously satisfied. It is easily checked that

"This binary operation is not to be confused with the inner product of two elements of the LVS.
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[A, BC]=[A, B]C+ B[A, C], [AB, C]=A[B, C]+[A, C]B. (12.58)
Using these properties, it follows at once that the Jacobi identity is satisfied, namely,
[A, [B, ClI1+[B, [C, All+IC, [A, Bll=0. (12.59)

Thus, (n x n) matrices form a Lie algebra, with the commutator of two matrices as
the Lie bracket. This Lie algebra is denoted by gl(n). It is associated with the Lie
group formed by the set of all nonsingular (n x n) matrices, called the general linear
group G L(n) —more precisely, GL(n, R) or GL(n, C), depending on whether the
matrix elements are restricted to real numbers or can take complex values.

% 11. Verify Egs. (12.58) and (12.59).

Various subsets of matrices also form interesting and physically relevant Lie
algebras. For example:

e The set of traceless (n x n) matrices forms the Lie algebra s[(n), associated with
the special linear group SL(n) of nonsingular, unimodular (n x n) matrices.

e The set of (d x d) antisymmetric matrices with real elements comprises a Lie
algebra. The associated Lie group, the special orthogonal group SO(d), is the
group of proper rotations in d-dimensional Euclidean space.’

e The set of skew-Hermitian (n x n) matrices forms the Lie algebra u(n) associated
with the Lie group U (n) of unitary (n x n) matrices.

% 12. Verify that the following subsets of (n x n) matrices form linear vector spaces,
and that in each case, the commutator of two matrices is again a matrix of the same
kind:

(a) traceless matrices,
(b) real antisymmetric matrices, and
(c) skew-Hermitian matrices.

A Lie algebra in Hamiltonian dynamics: Here is another important example of a
Lie algebra. Consider a Hamiltonian system in classical dynamics, with n degrees of
freedom. Let the generalized coordinates be (¢, ..., ¢.), and let the corresponding
canonically conjugate momentabe (py, ..., p,).Asyouknow, the Poisson bracket
of any two differentiable functions F and G of the dynamical variables is given by

wf w (OF 0G  OF 0G
F = —_ ). 12.
i Gl ; <3Qi Opi api 8611’) (12.60)

It is straightforward to verify that all such differentiable functions of the dynamical
variables form a linear vector space. One can go further:

8You might then ask why the generators J; of rotations in three dimensions are Hermitian rather
than antisymmetric. This has to do with real versus complex Lie algebras.
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— Differentiable functions of the generalized coordinates and momenta of a Hamil-
tonian system with n degrees of freedom form a Lie algebra, with the Poisson
bracket as the Lie bracket.

% 13. Verify this statement.

This Lie algebra is related to the symplectic group Sp(2n, R), which is the group
of canonical transformations of the phase space variables of a Hamiltonian system
with n degrees of freedom. Other examples of Lie algebras, involving operators (or
infinite-dimensional matrices), will be encountered in Chap. 15, Sect. 15.1.1.

12.5 Spectral Representation of a Matrix

We have seen how an (n x n) matrix is really an expansion in the natural basis. The
natural question that arises is: What does a matrix (or, more generally, an operator)
look like in terms of its eigenvectors and eigenvalues? The answer is provided by the
spectral decomposition of a matrix. For simplicity, let us consider the straightfor-
ward case of a diagonalizable (n x n) matrix M.

12.5.1 Right and Left Eigenvectors of a Matrix

If S is the transformation matrix that diagonalizes M, we have
ST'MS=A, or M=SAS"", (12.61)

where A is a diagonal matrix with the eigenvalues of M as its elements. This rep-
resentation of M is essentially a spectral decomposition, as you will see. Its great
advantage is that it also provides, automatically, a representation for any sufficiently
regular function of the matrix concerned. Equation (12.61) implies that any positive
integral power of M is given by

M* = SAkS!, (12.62)
where the elements of the diagonal matrix AX are just the powers )\f of the eigenvalues

of M. Therefore, for any function f thatis a convergent power series of its argument,
we have

fM) =SF(M)S™!, where f(A) = diag(f(\), fFO). ..., . f(m).\ (12.63)

What follows is essentially valid not only for matrices but also for operators in
an LVS. Let us therefore switch to bra and ket notation, as this makes matters more
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transparent. The first point to note is that a general (n x n) matrix M is not symmetric.
This complicates matters a bit. As stated in Sect. 12.3.1, such a matrix has two sets
of eigenvectors, namely, right eigenvectors {|v);)} and left eigenvectors {{x;|}, which
share the same set of eigenvalues {);}. Thus

M i) = Ai lhi) and  (xi| M = Ai {xil.- (12.64)

The point is that |1);) and (y;| are not, in general, adjoints of each other.” They can
be chosen so as to form, in general, a bi-orthogonal set of eigenvectors. To keep
matters simple, let us assume that the eigenvalues are nondegenerate. We can arrange
the normalization of these vectors such that the orthonormality and completeness
relations are

(xilv;) =46;  (orthonormality)
Z [¥i){xil = I  (completeness). (12.65)

Then the spectral representation'® of M is just

M =" N Wil (12.66)

It follows from the orthonormality property above that

ME =3O 1) (al, and (M) =D FOW) i) (l- (12.67)

Representation of the resolvent: Recall the definition of the resolvent of M in
Eq.(11.54) of Chap. 11, Sect. 11.4.4: R(z) = (zI — M)~'. We may now write this
in the form

R =Y 'Zwib; N (12.68)

i

I have already mentioned that R(z) exists for all complex numbers z except those
belonging to the eigenvalue spectrum of M. The factor (z — A)~!in Eq. (12.68)
makes it obvious why this is so.

9T have used the notation |1;) and (y; | for the right and left eigenvectors, so as to avoid any possible
confusion with the natural basis, for which I have used the symbols |¢;) and (¢;|.

10Note that the term “spectral decomposition” is used sometimes for the representation S~ ! MS = A
of a diagonalizable matrix.
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y[)

Fig. 12.2 Example to illustrate the spectral representation of a (3 x 3) matrix

12.5.2 An Illustration

As an illustration of the use of the spectral representation of a matrix, consider the
following problem.

Three identical cylindrical glasses of uniform cross-section, containing unequal
amounts of a beverage, are placed on a table (Fig. 12.2). The initial levels in the three
glasses are given by the positive numbers xg, yo, and zg, respectively. In the first
step, the levels of glasses 1 and 2 are first equalized,'! and then the levels of glasses
2 and 3 are equalized, and finally the levels of glasses 3 and 1 are equalized. This
cyclic procedure is repeated over and over again. What are the levels x;, yi, and zj
in the respective glasses after k iterations of the procedure? What are the limiting
values of these levels as k — 0co?

It is clear that, for any positive integer k, we must have

Xk + Yk + 2k = X0 + Yo + 2o, (12.69)

because no liquid is lost. We expect intuitively that, as k — 00, each of the quantities
Xk, Yk, and z; will approach the common limiting value %(xo + yo + z0). The task
is to find the exact solution for any finite k.

Let x; be the column vector with elements (xx, yx, zx). It is evident that the levels
X1, y1, and z; at the end of the first cycle are certain linear combinations of x, yo,
and zg. A little calculation shows that

W = oolw
0w K|— colw
SN

X = Mxy, where M = (12.70)
As the cycle repeats itself, it is clear that
Xi =MXk_1 =MkXQ. (1271)

UThat is, the level in each glass now becomes %(xo + yo).
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All we have to do, therefore, is to evaluate the kth power of the matrix M. We could,
of course, try to diagonalize M and hence read off M*. But M is not symmetric, and
the algebra would be tedious. Here is an equivalent, but far less tedious, way to arrive
at the answer.

Note that two columns (or rows) of M are identical to each other. Hence det M =
0, so that 0 is an eigenvalue. Further, the elements of M are positive numbers,
and each row adds up to unity. M is therefore a so-called stochastic matrix.'?
It follows that (1 1 I)T is a right eigenvector, corresponding to the eigenvalue 1.
Finally, from the coefficient of \? in the eigenvalue equation det (\] — M) = 0 (or
from the fact that the sum of the eigenvalues is equal to %, the trace of M), you
can deduce that the remaining eigenvalue is —%. Let us label these eigenvalues
/\1:0, )\2 8,2111(1)\3—1

The right and left eigenvectors of M corresponding to its three eigenvalues are
easily found. They are

1
[y = (1], Oal=(10-1);
0

1
lha) = [-2]. (al =5 (=1-12); (12.72)
1
1
ls) = 1], el =3(111).
1

I have chosen the overall multiple of each left eigenvector such that (y;|v;) = 1
for each i. It is easy to check that (x;|1;) = 0 for i # j. Hence the orthonormality
condition (the first equation in (12.65)) is satisfied.

Writing out the three matrices [1;) (x;| (i = 1,2, 3), it is readily verified that

%)

Z Jxi| =1 and ZA i) (il = M (12.73)

It is now a very simple matter to use the fact that

3
M5 =0k i) (x| (12.74)

i=1

12Each column of M also adds up to unity. Hence M is, in fact, a doubly stochastic matrix. This
last property is no longer valid in the general case, i.e., when the process is conducted with n > 3
glasses, as you will see subsequently.
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to write down the matrix M* explicitly. Substitution in Eq. (12.71) leads at once to
explicit solutions for x;, yi, and z;. For every positive integer k, we have

_ (x0o+y0+20)  (—DFQRzo—x0— y0)

Xk = 2k

3 (3 x 8) ’
_ Go+yo+z0)  2(=D"Q2z0 — x0 — yo)
Ve = 3 G T : (12.75)

The conservation condition (12.69) is obviously satisfied by these solutions.

% 14. Derive Eq. (12.70), and work out the subsequent steps to arrive at the solutions
given by Eq. (12.75).

An example of relaxation to equilibrium: The problem just discussed provides
as example of the phenomenon of relaxation to an equilibrium state. Each of the
quantities x, yi, and x; “relaxes” to the same limit %(xo 4+ yo + z0) as k — oo.
This process occurs exponentially rapidly, with a characteristic relaxation time that
can be read off from the identity 8 ¥ = ¢ =¥ "8, The relaxation time is thus equal
to 1/(In 8), in the time units we have chosen (i.e., unit time for each full cycle
of the process). The approach to the limiting value is oscillatory, as each of the
levels alternately overshoots and undershoots the asymptotic value with decreasing
amplitude.

Can some kind of physical meaning be attached to the three eigenvalues of M in
this case? The eigenvalue A3 = 1 is associated with the equilibrium or asymptotic
solution as k — oo. The eigenvalue A\; = 0 does not appear to contribute directly
to M* at all. But it is indirectly present, of course, via the completeness relation. Its
role in the present problem is to maintain the equality of x; and z; for all k > 1. This
leaves the remaining eigenvalue, A, = —%, to control the time evolution of the three
levels to their common limiting value.

The kind of analysis carried out above often occurs in the study of Markov chains
in discrete time (although the present example involved a deterministic process rather
than a random one). You will encounter another important instance of a Markov chain
(the simple random walk) in Chap. 19, Sect. 19.4.1. The more general case of Markov
processes will be considered in several places in the sequel, in Chaps. 20, 21, and
30.

% 15. Let us generalize the example just considered to the case of n glasses placed
in a ring. Label the glasses by j, where 1 < j <n and the label (n+ 1) =1. A
complete cycle is the equalization of levels successively between the pairs of glasses
(j,j+ 1D fromj=1toj=n.

(a) Write down the corresponding “transfer matrix” M.
(b) Show that 0 and 1 are nondegenerate eigenvalues of M, and find the correspond-
ing eigenvectors.
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12.6 Solutions

1. The matrix representation of the operator H in the basis ( [o1), |2) ) is

H=(0).

The eigenvalues of this matrix are a+/2 and —a~/2. The corresponding (un-
normalized) eigenvectors are

(vae) = (77

respectively. Since the basis { |o1), |@2) } corresponds to representing these vectors

by (é) and (?), respectively, the eigenvectors of H may be identified as

lp1) + (V2= 1) |¢n) and (1 —~2)|¢1) + [2),

respectively. >

2. Start with a general matrix U as in Eq. (12.13). Imposing the condition U U' = I
gives the equations

P+ 182 =1, WP2+162=1, ay +B86 =0, a*~v+B35=0.

These comprise four independent conditions. The last of these gives § = —a* v/3*.
But the determinant condition (12.15) implies that

ad— Ly =eé",

where 0 is some real number. Substitute for § in this equation, and use the condition
la|?> + |B]*> = 1. We immediately get

v =—F*e® andhence &= a*e”.
This establishes Eq. (12.16).

The identity matrix is obviously unitary. If U is unitary, so is U'. And every
unitary matrix has an inverse, since U~! = U, Finally, the product of two unitary
matrices U and V of the same order, U and V, say, is also unitary: (UV) (U V) =
UVVTUT = U U" = I. Hence all unitary (n x n) matrices form a group, denoted
by U (n). For n = 2, the group is U (2). |

3. The n row vectors are clearly linearly independent. M is an upper triangular
matrix, so that its diagonal elements are its eigenvalues. Each of these is equal to
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unity. Hence, for all n > 2, the rank of M is n, and the nullity is 0. There is only one
right eigenvector, namely, the transpose of the row vector

(10---0)".

Hence the matrix is a defective one, and cannot be diagonalized by a similarity
transformation.

The minimal polynomial of this matrix is its characteristic polynomial itself:
p(M) = P(M) = (M — I)". The equation (A — 1)" = 0 has only a multiple root,
corroborating the fact that M cannot be diagonalized. >

4. (a) The eigenvectors can be written down by inspection. To start with, it is obvious
that the column vector with every element equal to 1 is the right eigenvector corre-
sponding to A\; = n. The rest of the column vectors, corresponding to the repeated
eigenvalue 0, can also be guessed readily. In order to save some space, let us work
with the transposes of the column vectors concerned, i.e., the corresponding row vec-
tors. As M is a real symmetric matrix, it follows that these row vectors are precisely
the left eigenvectors of M.
Here is a rather obvious choice for the (left) eigenvectors:

(hl=(111---1)
(ol =(1=10---0),
(W3 =(10-1---0),
Here (1| corresponds to the eigenvalue n, while (], ..., (1,| correspond to the

(n — 1)—fold repeated eigenvalue 0.

(b) It remains to orthonormalize this set of eigenvectors using the Gram—Schmidt
procedure. Observe that (v;| is already orthogonal to all the other eigenvectors
(i, 2 <i < n.The latter eigenvectors, however, are not orthogonal to each other.
It is easily checked that this leads to somewhat involved expressions when orthonor-
malization is carried out. But any set of n — 1 linear combinations of the eigenvectors
(1], ..., (1] that span the subspace spanned by these vectors would serve just as
well as the eigenvectors for the eigenvalue 0. A somewhat more convenient starting
point in this regard is the choice

Wol=(1(1=m)1---1), ..., @l=(0111---1=n).

The orthogonalization procedure then yields the set of normalized left eigenvectors

(rl=(11111---1)//n,
(2l =(1A=m)111---1) /\/n@n—1),
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(@sl=(102-m) 11---1) /(= D(n—2),
(sl =(100@=m) 1---1) [/ (n=2)(n = 3),

(ful = (10000 --- —1) //2)(D).

The orthonormalized right eigenvectors of M are just the ket vectors corresponding
to the bra vectors above. >

5.(a) The rows of H are linearly independent, so that its rank is 3. Hence its nullity
must be zero. The roots of the characteristic equation det (\/ — H) = 0 are trivially
found. The eigenvalues are \; = A\, = 1, A3 = 2. Hence the characteristic equation
has a multiple root. But H is a real symmetric matrix. Therefore it must be diago-
nalizable by a similarity transformation S~! H S, where S is an orthogonal matrix.

The right eigenvector u corresponding to any eigenvalue X is found, of course, by
writing out the equation Hu = A\u in components and solving the resulting simulta-
neous equations for the components ;. This example serves to illustrate the typical
situation when a repeated eigenvalue has more than one eigenvector. The equation
Hu =uyieldsu; = u;, up = u3,andus = u,. This means that the eigenvectors cor-
responding to A\; and )\, are of the form (u L U uz)T, where u; and u, are arbitrary.
Clearly, there are two linearly independent possibilities, represented by the standard
choices u; = 1, up =0, and u; = 0, u = 1, respectively. The equation Hu = 2u
for the eigenvalue \; gives u; = 0, up, = —us3. This eigenvector is therefore propor-
tional to (O 1 - I)T. Normalizing the eigenvectors, we arrive at the orthonormal set
of eigenvectors

1 1 0 1 0
=101, =—11 d = — 1 s
[p1) . [p2) 7 | and |¢3) 7 !

corresponding to the eigenvalues 1, 1, and 2, respectively.

(b) Writing the column vectors |¢;) next to each other, we have the matrix

. (V20 0
S=—| o1 1
V2 011

S is a symmetric matrix, and further, S> = I. Hence S~! = § = ST, i.e., S is orthog-
onal. Itis easily verified that S~ HS = diag (1, 1, 2). Thus the real symmetric matrix
H is diagonalized by the orthogonal matrix S, as expected. >
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6. The elements of each row (or column) add up to zero. Hence any column (or row)
of M is the negative of the sum of the rest of the columns (or rows). Moreover, 0 is
an eigenvalue of M, with the column vector (1 L. 1)T as the corresponding right
eigenvector. The rank of M is therefore (n — 1), and its nullity is 1.

Since the only nonzero elements of the first row of M are ap = —1, a; = ¢, and
an—1 = p,with p 4+ g = 1, the eigenvalues follow at once from the general formula
in Eq. (12.42). After some simplification, we get

Ao =0,
M = —1+4cos 2mk/n) +i(q — p) sin 2wk/n), wherek =1,2, --- ,n— 1.

Remark In accordance with Gershgorin’s Circle Theorem (Chap. 11, Sect. 11.4.2),
all the eigenvalues lie within or on a circle of radius 1 centered at —1 in the complex
plane. >

7. You will find it helpful to use the identities w* = w™! = w?. To write down the

inverse of S, note that W is a circulant matrix and hence a normal matrix. It can
therefore be diagonalized by a unitary transformation. Thus S~! = S7. >

8. (a) As A and B are Hermitian matrices, it is guaranteed that each of them can be
diagonalized by a unitary transformation. It is easily verified that AB = BA (= 3A).
Since A and B commute with each other, it follows that they can be diagonalized
simultaneously.

(b) Solving the equation det (Al — A) = 0 yields the eigenvalues of A, namely, 0, 0,
and 2. Note that A has only one independent nontrivial row, namely, (1 0 1). Hence
itsrank is 1, so that its nullity must be 2, i.e., there must exist two linearly independent
eigenvectors corresponding to the eigenvalue 0. Moreover, any linear combination
of these is also obviously an eigenvector with eigenvalue 0. But not all such combi-
nations can be expected to be eigenvectors of B as well.

The eigenvalues of B are —1, 2, and 3, respectively. The rank of B is 3, and its
nullity is 0. Because B has no repeated eigenvalues, it is more convenient to find
the eigenvectors of B, and then to check that they are also eigenvectors of A. Solve
the equation Bu = Au for the components of u, with A set equal to each of the
eigenvalues of B in turn. It is straightforward to obtain the eigenvectors

a b c
—2al, b, 0 (where a, b, ¢ are constants)
—a —b c

corresponding to the eigenvalues —1, 2, and 3, respectively. It is easily checked
that they are also eigenvectors of A, corresponding to the eigenvalues 0, 0, and 2,
respectively.
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(c) Write down the three column vectors above as a (3 x 3) matrix S, and hence its
Hermitian conjugate S 7. (Take the constants a, b, and ¢ to be real, in order to avoid
unnecessary complication.) This yields

a? + b* 4+ ¢* —2a%* + b? —a® — b* + ¢?
SST = —2a> +b* 4a®+b? 2a% — b2
—a*—b*+c* 2a> -0 A+ b*+?

Now equate S ST to the unit matrix, and read off the consistent solutions obtained for
a, b, and c. Up to an overall sign, a = 1/\/6, b=av?2, c= a+/3. We thus arrive
at the unitary matrix

N (AR
S=— -2 V2 0], henceS'=8"=— |V2V2 -2
e\ | _ 33 ve\rz o v3

It is straightforward to check that S diagonalizes both A and B according to
S'AS = STAS = diag (0, 0, 2) and S~'BS = STBS = diag (—1, 2, 3).

Remark Note the order in which S~! and S appear in the above. The matrices
SAS™! and SBS™! are not diagonal matrices. This has to do with the manner in
which the transformation matrix S has been constructed in all the examples consid-
ered: its columns are the right eigenvectors of the matrix being diagonalized.

You could have proceeded by finding the common set of /eft eigenvectors of
A and B, and writing these down as the rows of a transformation matrix 7. The
diagonalization of A and B is then achieved by the similarity transformations
TAT~!' = diag (0, 0, 2) and TBT ' = diag (—1, 2, 3). But then T turns out to
be precisely the same as the matrix S~! found above. Check this out! >

9. The anti-symmetry of the Poisson bracket is obvious. You have to check that the
relations (12.58) and (12.59), with commutators replaced by Poisson brackets, are
satisfied by functions of the phase space variables. >

10. (a) Let the levels in the n glasses after k iterations of the procedure be given by
the components of the column vector

x(k) = (1K) x2(k) ... %K) " .

A little calculation shows that x(1) = M x(0), where the elements of the (n x n)
transfer matrix M are as follows:

27242 " fork=1,2
M = My = {2”2+k for 3 <k <n.
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For2 <j<n-—1,
2-J fork=1,2
Mjy=32% 7 for3<k<j+1
0 fork > j+ 1.

Writing out the matrix explicitly,

2—2 + o—n 2—2 + o—n 2—n+l 2—n+2 .. 2—3 2—2

2-2 2-2 2710 .. 0 0
273 2-3 272 -1 0 0
24 24 273 272 ... 0 0

27;1+1 27;z+1 27;1+2 27;t+3 2-29-1
272427 =2 4 pn pondl g-nt2 93 92

As in the case n = 3 worked out earlier, we have
x(k) = M x(k — 1) = M*x(0) for every positive integer k.

(b) The matrix M has only two distinct Gershgorin disks (Chap. 11, Sect. 11.4.2)
in the complex A-plane. The first of these is centered at % + 27", and has a radius
% — 2" Tts rightmost point therefore passes through 1. The second disk is centered
at i, and has a radius %. It, too, passes through the point 1. The first disk is contained
within the second, except for the common point of tangency at 1. All the eigenvalues

of M must therefore lie on or within the second disk.

Each row sum of M is equal to unity, so that M is a stochastic matrix. (It is doubly
stochastic only in the case n = 3.) Hence the uniform column vector (1 .- I)T
is a right eigenvector of M, corresponding to the eigenvalue 1. This eigenvector is
essentially the asymptotic or equilibrium distribution, in which the levels in all the
glasses become equal to each other.

The first (n — 1) rows of M are linearly independent of each other, while the last
row of M is identical to the first row. Hence det M = 0, and 0O is an eigenvalue of M.
This reflects the fact that x; (k) = x, (k) for all k. The eigenvector corresponding to
the eigenvalue O can be found by solving the equation M u = M j;u; = 0. We have

Mg =0 = 3(u1 +uz) + suz = 0.
Using this in the successive equations for j = 3, 4, ..., (n — 1), it follows that
Uy =us =---=u, =0.

Now setting j = 1 (or j = n), we find that
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Ty +u) + My qug =0, or uy +up =0.

This implies that u3 = 0, and further, that the eigenvector is proportional to

(1 —10--- O)T. You could, of course, have guessed this result by noting that the
first two elements of each row of M are equal. >



Chapter 13 ®)
Infinite-Dimensional Vector Spaces Giese

We have seen that matrices provide representations of operators in linear vector
spaces of a finite number of dimensions. In physical applications (e.g., in quantum
mechanics), however, infinite-dimensional spaces occur frequently. We then have
to deal with infinite-dimensional matrices and other kinds of operators, such as
differential or integral operators. Many interesting features and subtleties arise in
infinite-dimensional spaces, that are not present in infinite-dimensional spaces. I
will therefore begin with a couple of infinite-dimensional spaces that are of great
importance in physical applications, especially in quantum mechanics. We will then
go on to some of the basic properties of linear operators that act on the elements of
an LVS.

13.1 The Space £; of Square-Summable Sequences

The most natural infinite-dimensional generalization of the Euclidean spaces R¢
(d=1,2,...) is the space of square-summable sequences, ¢,. It comprises all
infinite sequences (x|, X2, ...) such that

o0
> al? < o0. (13.1)
n=1

Note that this requires |x,|? to tend to zero as n — 0o more rapidly than n~!, i.e.,
|x,,| must vanish faster than n~!/2. This convergence condition ensures that the inner
product of two elements in the LVS (to be defined below) is always finite, and
that the usual properties of vectors in an LVS, such as the Cauchy—Schwarz and

triangle inequalities (Eqgs. (10.15) and (10.21) in Chap. 10, Sects. 10.3.1 and 10.3.2,
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respectively) are satisfied. Note that the components x,, may be complex numbers,
in general.
The ket vectors of £, may be represented by infinite-dimensional column matrices,

vy =121, =1"2],.... (13.2)

The space ¢, is self-dual. The bra vectors that are elements of the dual LVS may
be represented by infinite-dimensional row matrices. Thus the adjoint of the ket |1))
above is the bra

(W] = (xf x5 ---). (13.3)

The inner product is defined as

(Ol = i x (13.4)
n=1

The square of the norm of a vector is thus

1% = (@) = D bl < o0 (13.5)
n=1

It is evident that the £,-norm ||?)|| vanishes if and only if |?)) is the null vector, all of
whose components are zero.

% 1.Consider the infinite sequence (x;, X, ...) whose nth element x,, is given by
(@) (=1)"(nn)/n (b) n!/(2n)! (c) (n)?*/(2n)! (d) (2/n)"
@) 1/(n*+ D> (f) 2n+1)/(Bn+4)* () e"/n" (h) 272
Q) n!/[2Cm)!2 G) 1//nIn(m +1) ) 2"n/[2n)"]/2.

Which of the sequences above belong to £,?

For completeness, I mention that ¢, is actually a member of an infinite family
of linear vector spaces of sequences. The space £, , where p is any number > 1, is
defined as comprising all infinite sequences that satisfy the condition

00 1/p
<Z |x,,|”> <. (13.6)
n=1

The left-hand side in (13.6) is called the £ ,-norm of the vector concerned. It turns out
that the dual of the space £, is the space £,, where p and g are related according to
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(I/p)+(1/q) = 1. (13.7)

It is clear, therefore, that ¢, is special because it is self-dual (p = ¢ = 2). The norm,
too, then becomes precisely what we would naturally regard as the length of the
vector in Euclidean geometry. £, is also the space that is most often relevant in
applications.

13.2 The Space £, of Square-Integrable Functions

13.2.1 Definition of L,

Functions belonging to some specified class (e.g., differentiable functions) often
constitute a linear vector space (a function space). Among these, an important one
is the LVS £, (—00, 00) of square-integrable functions of a real variable x, namely,
all functions that satisfy the condition

/oodx I f(0)? < oo. (13.8)

Itis straightforward to check out that such functions satisfy all the conditions required
of the elements of an LVS. Note that, while x is real, f (x) itself could be a complex-
valued function, in general. One can also speak of £, functions that are defined in
some interval [a, b], that is, functions that satisfy

b
/ dx |f(x)]* < oo, sothat f(x)e Lrla, bl (13.9)

If no range is specified, it is understood that we are dealing with £,(—o00, 00). The
left-hand side in (13.8) defines the square of the norm of an element of this space,
as we will see shortly.

13.2.2 Continuous Basis

It is intuitively clear that a function space is obtained from a space of sequences (or
ordered sets of numbers) when the index j in the sequence

(X1, X2, .00y X, .00) (13.10)

becomes a continuous variable. In this sense the value of f(x) for each given value
of the argument x represents a “component” of an abstract vector. The latter is
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conveniently and suggestively denoted by | f ). The idea is that there is a continuous
basis {| x )} in the LVS, labeled by the values of x. The elements of this basis satisfy
the orthonormality and completeness relations

(x"|x)=46(x"—x) (orthonormality) (13.11)
and
o0
/ dx|x)(x|=1 (completeness), (13.12)
—0o0

where [ is the unit operator in the space.! Then

o] o0 o]

dXIX)(XIIf)Z/ dx ((x]f))1x) E[ dx f(x)|x).

|f)=1|f>=/
- T a3.13)

—00
We thus arrive at an important conclusion:

e The function f(x) is just shorthand for the expansion coefficient of a vector in the
| x )-basis, i.e.,

fx)={(x|f), andhence (f|x)= f*(x). (13.14)

This way of looking upon functions of a continuous variable is very useful.

Thus £, may be regarded as the natural continuum analog of the space ;. It is
also a self-dual LVS. The inner product of any two vectors | f ) and | g ) then reduces
to

[ee]

igr=ri( [ avoe)io = [ e

—00 —

=/ dx f*(x) g(x). (13.15)

This inner product is often written as (f, g), butitis helpful in physical applications
to retain the Dirac notation ( f | g ) for function spaces as well.

It is evident that the square of the norm of an element f € £,(—00, 00) is given
by

IFIP=(f1f)= f dx | f ()] (13.16)

Recall the Cauchy—Schwarz inequality for vectors inan LVS, |( £19)1*> < | £1I? Ilg|l*.
As applied to £,(—00, 00), this inequality reads

ICompare these equations with the corresponding ones for a discrete basis, Egs. (10.3) and (10.4)
of Sect. 10.2.1.
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2 o0 o0
s(f dxlf(x)|2> ([ dx|g(x>|2>. (13.17)

The inequality reduces to an equality if and only if f(x) is a constant multiple of
g(x). All the foregoing statements apply to any L,[a, b] as well.

‘/ dx f*(x) g(x)

% 2. Identify the functions f(x) that belong to £;(—00, co) among the functions
listed below. Wherever f(x) is indeterminate, assume that it is defined by continuity.

@ 24+ 172 (b (sin x)/x (¢) (sin x)2/x2 (d) X3 e
(e) (tanh x)/x (f) e~ cos x (g) e~ '/*’ (h) (x2— 1D~

% 3. Use the Cauchy—Schwarz inequality in £,(—00, 00) to show that

—x22
o e=X /2y A
oo 2 D172 '

Compare this upper bound with the numerical value of the integral obtained using
any convenient integration routine.

13.2.3 Weight Functions: A Generalization of L,

We have defined an element of £,(—00, 00) as any function f(x) that satisfies
(13.8), namely, ffooodx | f(x)|> < co. The convergence of the integral immediately
imposes a necessary (but not sufficient) condition upon f(x): it must tend to zero
more rapidly than |x|~'/? as |x| — oo. This rules out polynomials, for instance,
as members of £,(—o0, o0), because the corresponding integrals diverge. On the
other hand, as we shall see in Chap. 16, specific families of polynomials are used to
construct natural basis sets in various function spaces. These spaces include those
with a semi-infinite domain (e.g., [0, c0)) and an infinite domain (—oco, 00). How
is the divergence problem overcome?

This is done by introducing a convergence factor or weight function p(x) into
the definition of the inner product in the function space. The function p(x) is positive
in the region of integration, and vanishes sufficiently rapidly as |x| — oo. Thus,
instead of the condition (13.8) for the square integrability of a function, we impose
the condition

/oodx p(x) | F @) < . (13.18)

o0
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Flg .13.1. Maxwellian peq(,U) A
distribution of the speed of a
molecule in a classical ideal

gas (Eq. (13.19)) (schematic)

The weight p(x) is chosen such that the convergence of the integral is secured for the
class of functions of interest.? For example, if we choose p(x) = e"‘z, it is clear that
f(x) could be any polynomial of arbitrarily high degree. A similar generalization is
applicable to £,[a , b] in any finite interval [a, b]. The weight p(x) is then positive
in (a, b), and may or may not vanish at the end points a and b. I will return to
these matters in greater detail in Chap. 16, when we discuss families of orthogonal
polynomials.

The Maxwellian distribution of molecular speeds provides a physical example of the
use of a weight factor in function space. Consider a classical ideal gas of particles
of mass m in thermal equilibrium at a temperature 7. According to equilibrium
statistical mechanics, the normalized probability density p®(v) of the speed v of a
molecule is given by

32 2
2 mv
) 4mv? exp {— (13.19)

eq —
P () ( 2T )

27TkBT

where kp is Boltzmann’s constant, and 0 < v < oo (see Fig. 13.1.) The rth moment
of the speed is given by

(V") = /oodv ). (13.20)
0

Note that there is no denominator on the right-hand side, because the PDF is normal-
ized to unity, i.e., foood v p®(v) = 1. For any positive value of r, there is no problem
of convergence at the upper limit of integration, because of the Gaussian factor in
p°4(v). At the lower limit 0, the behavior of the integrand in Eq. (13.20) is ~ v"+2
because of the extra factor of v supplied by p°(v). Therefore the integral is con-
vergent not only for all positive values of », but also for negative values as long as
r+2> —1,ie,r > —3. In particular, the quantities (v~') and (v?2) are finite.

2More generally, what is involved is a so-called integration measure di(x). The form dy(x) =
p(x) dx is a special case, corresponding to the existence of a weight or density p(x). I will comment
further on this in Chap. 16, Sect. 16.1.2.
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% 4. Consider functions of v in the function space £, [0, 00), with a Gaussian weight
function given by p®i(v), Eq. (13.19).

(a) Use the Cauchy—Schwarz inequality to show that the average value of the recip-
rocal of the speed of a molecule is greater than the reciprocal of the average
speed. That is,

(™) > @

(b) Use an analogous argument to show that
(W?) > 7

(c) Using the formula of Eq. (3.16) of Chap. 3, Sect. 3.1.5 for the general Gaussian
integral, write down the four average values (v), (w1, (v?), and (v~2), and
verify that both the inequalities above are indeed satisfied.

(d) If «v is any real number in the range —3 < a < 3, show that

W (W™ = (1 — a®) sec (3ma).

‘We will have the occasion to return to the Maxwellian distribution of velocities
in Chap. 20, Sect. 20.2.3, and again in Chap. 21, Sect. 21.7.3.

13.2.4 Ly(—oc, 00) Functions and Fourier Transforms

The connection between £, (—oc0, oo) functions and Fourier transforms will become
clearer after we discuss Fourier transforms in Chap. 18. But it is both helpful and
relevant to note the following points right here:

e The Fourier transform f(k) of a square-integrable function f(x) is also square-
integrable. In other words, if f(x) € £L,(—0c0, 00), then f(k) also belongs to
L,(—00, 00). As you will see in Chap. 18, Sect. 18.1.2, this is yet another mani-
festation of Parseval’s Theorem (encountered in Chap. 10, Sect. 10.2.3).

e We may therefore look upon a square-integrable function and its Fourier transform
as two different, but equivalent, ways of representing the same vector or element
of the LVS of square-integrable functions.

e From this point of view, the Fourier transform operation in £,(—o0, 00) is nothing
but a change of basis (from the {| x )} basis to the {| k)} basis).

These facts have an immediate implication for quantum mechanics:

(i) The state vector of a quantum mechanical system such as a particle or a collection
of particles may be represented either by its position-space wave function or by
its momentum-space wave function. The two wave functions comprise a Fourier
transform pair.

(ii) If the position-space wave function of a particle is normalizable, so is its
momentum-space wave function.
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13.2.5 The Wave Function of a Particle

The generalization of the space £, to square-integrable functions in more than one
variable is straightforward. In three dimensions, for instance, we have the space of
functions of r that are square-integrable, namely,

/d3r [ f(r))? < o0. (13.21)

The relevance of such £, spaces to quantum mechanics is now obvious. Recall that
the wave function of a particle satisfies, when the state of the particle is a bound state
in some potential, the normalization condition

/d% W, 0> =1. (13.22)

This condition follows from the interpretation of |1/ (r, t)|? as the probability density
of the particle in position space.

e This is how the function space £, of square-integrable functions enters quantum
mechanics naturally.

From the mathematical point of view,

e the wave function ¢ (r, t) of a quantum mechanical particle actually is nothing but
the coefficient in the expansion, in the position basis, of the abstract state vector
|W (1)) of the particle.

The state vector is an element of a certain LVS called a Hilbert space (see Sect. 13.3.1
below). The position basis is the continuous basis formed by the position eigenstates
Ir) of the particle. The orthonormality and completeness relations for this basis are

(r'lr) =6¥@’ —r) and /d3r Ir) (r| = I, (13.23)

where / denotes the unit operator in the Hilbert space. Then

W (1)) = fd3r r) (r | (1)) = /d3r ((e|W (1)) Ir) = /d3r p(r, ) r),
(13.24)
so that

P(r, 1) o (r|¥ @) . (13.25)

It is obvious that Eq. (13.25) is a three-dimensional version of Eq. (13.14).

Exactly the same sort of relationships hold good in the momentum basis. This
is the continuous basis formed by the momentum eigenstates of the particle. The
orthonormality and completeness relations for this basis are
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(p'1p) = 6@ —p) and /d3p D) (pl = I. (13.26)

Further,

| (1)) =fd3p|p> (p ¥ (1)) =fd3p(<p|w>>) |p>z/d3p o, 0 p),
(13.27)
so that

< (pw ). (13.28)

P(p, 1)

Once again, the wave function J(p, t) is nothing but the coefficient in the expansion
of the state vector [ (7)) in the momentum basis. The relationship between the
expansion coefficients (or wave functions) ¢ (r, t) and ¢ (p, t) follows readily (recall
the change-of-basis relations (10.11) of Chap. 10, Sect. 10.2.2):

b, 1) = (pI¥ (1) = /d3r Y, ) (plr). (13.29)

The discussion so far has been purely mathematical. The key physical input
comes in via the specification of the scalar product (p | r ) representing the “overlap”
between a position eigenstate and a momentum eigenstate of a particle.

e This overlap is determined by the fundamental canonical commutation relation
[x;, pr] =ihd i I between the position and momentum operators of the particle.
(Here the indices j and k label Cartesian components of the vectors concerned.)

(p|r) turns out to be proportional to e~"P*/"  With the standard proportionality

factor (or normalization constant) that is used in this regard, we have

D(p, 1) = / &*r e Py, 1), (13.30)

Q27h)3/2

In other words, J(p, t) is essentially the (three-dimensional) Fourier transform of
(r, t). Similarly,

B, 1) = (W (1) = /ch J@.0 (c|p). (1331)

Since (r|p) = (p|r)* = P/h,

1 o
e(r, 1) = G /d3p P (p, 1). (13.32)

That is, 1(r, t) is the inverse Fourier transform of J(p, t), as you would expect.
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13.3 Hilbert Space and Subspaces

InSects. 13.3.1 and 13.3.2, I list some essential definitions and terminologies, in order
to make the discussion as self-contained as possible. The reader is reminded once
again that this is not intended to be a substitute for more detailed formal treatments
of the topics concerned.

13.3.1 Hilbert Space

When we deal with infinite-dimensional linear vector spaces, we must be careful
about questions of convergence. In particular, we must consider the convergence
of infinite sums or linear combinations of the form ) -, ¢, |¢,). The concept of a
Cauchy sequence of vectors is fundamental in this regard.

e A sequence of vectors |¢, ), wheren = 1, 2, ... ad inf., is a Cauchy sequence if the
difference vector |¢,) — |¢,,) tends to the null vector |$2) as both n and m — oo.

e Cauchy sequences of vectors are guaranteed to tend to definite limits. Thus,
lim,_ o |®,) is some definite vector |¢) if and only if |¢,) is a member of a
Cauchy sequence.

It is clear that, in manipulating vectors in an infinite-dimensional space, it will be
convenient if all such limit vectors are also elements of the LVS. This leads naturally
to the next definition:

e An LVS which includes all limit vectors of Cauchy sequences among its elements
is said to be a complete linear space.

e An LVS in which an inner product is defined, and which is complete in the sense
just described, is called a Hilbert space.

Hilbert spaces can be finite-dimensional or infinite-dimensional. As you know, a
primary reason for the importance of Hilbert spaces is that

o the state vectors of a quantum mechanical system are elements of a Hilbert space.

We have spoken of continuous basis sets. It is important to know whether a given
infinite-dimensional Hilbert space has only such basis sets, or whether it also has
countably infinite, discrete basis sets as well. If it does, then it is called a separable
Hilbert space. In most simple applications of quantum mechanics, we only deal with
separable Hilbert spaces. This circumstance helps avoid many technical complica-
tions related to continuous basis sets, which I have ignored in the heuristic discussion
given here.

More generally, we could have an LVS that is complete, and on which the norm
of a vector is defined, but not an inner product of any arbitrary pair of vectors. Such
a space is called a Banach space. Every Hilbert space is a Banach space, but the
converse is not necessarily true. Although we shall not deal with Banach spaces in
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this book, I mention this because they play a significant role in functional analysis
and operator theory.

13.3.2 Linear Manifolds and Subspaces

In applications, one is often concerned with just a part of a linear vector space, and
this portion appears to be “self-contained” in some sense. The concept of a subspace
arises naturally in this regard.

Linear manifold: A subset U of an LVS V is a linear manifold if the following
property is satisfied: Given any pair of elements |¢), |x) € U, any arbitrary linear
combination « |¢) + 3 |x) (Where o and (3 are scalars) is also an element of U. It
is immediately obvious that the idea of a linear manifold can be extended to linear
combinations of more than two vectors. In principle, such combinations could also
involve infinite sums over vectors, raising the question of convergence to limit vectors.
This leads naturally to the next definition.

e A linear manifold U is a subspace of the LVS V if it is complete.

That is, all the limit vectors of all Cauchy sequences of vectors belonging to U also
lie in U. In practice, a subset U of vectors in an LVS V is a subspace if the following
conditions are met:

(i) U must contain the null vector.
(i) The sum of any two vectors in U must lie in U.
(iii) Any scalar multiple of any vector in U must lie in U.

The essential difference between a linear manifold and a subspace of an LVS is as
follows:

e A subspace of an LVS is also an LVS, with the same operations of addition and
scalar multiplication as the original LVS.

Moreover:

e If U; and U, are subspaces of an LVS, then so is their sum (or union) U; U Uy, as
well as their intersection U; N Us.
e The dimensions of these subspaces are related according to

dim (U; U U;) = dim U; 4 dim U, — dim (U; N Uy). (13.33)

The kind of “inclusion-exclusion” formula in Eq. (13.33) may be familiar to you
in more than one context—e.g., in probability theory. Figure 13.2 illustrates the
subspaces concerned. It helps us understand roughly why the contribution of the
“double-counted” intersection must be subtracted out.
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Fig. 13.2 The
dimensionality of the union
of two subspaces Uj and U,
is the sum of the
dimensionalities of the
individual subspaces, minus
that of their intersection
(shaded)

13.4 Solutions

1. All that you have to check out in each case is whether |x,| vanishes faster than
1/4/n as n — 0o. Wherever factorials appear, use Stirling’s formula (Eq. (2.11) of
Chap. 2, Sect. 2.2). The sequences from (a) to (i) are all square-summable, and belong
to £,. The sequences in (j) and (k) are not square-summable. As N — oo, the sums
ZN |x,|? diverge in these cases like In (In N) and N3/2, respectively. >

2. You have to check that ( f | f) exists in each case. This requires | f (x)|? to approach
zero more rapidly than 1/|x| as x — =00, and further, to have no nonintegrable
singularity in (—oo, 00). The functions in (a) to (e) satisfy these requirements, and
are elements of £,(—00, 00). In cases (b), (c), and (e), the apparent singularity at
x = 01is removed by the vanishing of the numerator, and f(x) = 1 (by continuity) at
x = 0. The functions in (f), (g), and (h) are not square-integrable. In (f), the factor e~
diverges as x — —oo. In (g), f(x) tends to a nonzero constant (unity) as x — 00.
In (h), f(x) has nonintegrable singularities at the points x = %1 in the range of
integration. >

3. In £5(—00, 00), consider the elements
f@)=e™"? and g(x) = >+ 1712,

and apply the Cauchy—Schwarz inequality. Since (f | f) = 7'/? and (g | g) = 7, the
desired inequality follows at once. This is not the best upper bound on the value of
the integral, of course. To give you an idea of how good a bound it is, the numerical
value of the integral is 1.9793 - - -, while 73/% = 2.3597 - . .. >

4.The rth moment of the speed, (v"), is given by Eq. (13.20) for all r > —3.

(a) You need to show that (v){v~') > 1. You can make the identifications (v) =
I £1I* and (v=") = l|g|1%, if you set f(v) = v'/* and g(v) = v™"/%. Then (f|g) = 1
because p®l(v) is normalized to unity. The required inequality follows at once from
the Cauchy—Schwarz inequality.
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(b) Similarly, setting f(v) = v and g(v) = v~', we have the identifications (W?) =
| £11> and (v=2) = | g||>. Once again, (f]|g) = 1 because fooodv p%(v) = 1. Hence
the Cauchy—Schwarz inequality implies that the product (v*)(v™2) > 1.

(c) Using the general formula of Eq. (3.16) for Gaussian integrals, we find

8k T\ '/ 2m \ 2
(v) =< ) and (v71) :( ) , sothat (v)(v™") =4/,
mm kg T

which is greater than unity. Similarly,

(v?)

3ksT
=27 and () = 2 sothat (VX)(v"2) =3,
m kBT

which again is greater than unity.
(d) Using the Gaussian integral (3.16), it is easy to see that

(") =277"’T (A3 + ) kT /m)*’*, aslongas a > —3.
Hence
(™) =21""’T (33 — ) kT /m)~*/?, aslongas a < 3.
Therefore
WY ) =4r"'"T (A3 + )T (33— ), provided —3 < <3.

Now use the functional equation I'(x 4+ 1) = x I'(x) (Eq. (3.14) of Chap. 3, Sect.
3.1.4) to get

PNV =1-AT30+)T (30 -®) (-3 <a<3).

At this stage, you need the so-called reflection formula® satisfied by the gamma
function, namely, I'(x) I'(1 — x) = 7 cosec wx. Using this formula, we get

(") (™) = (1 —a)sec (3ma) (-3 <a <3).

It is easily checked that the results obtained earlier for « = 1 and o = 2 are recov-

ered from this general expression. In the former case, since (1 — a?) vanishes and
sec (%ﬂ'a) becomes infinite at o = 1, you must pass to the limit, as &« — 1, of the

product of these two factors. >

3In Chap. 25, Sect. 25.2.7, we shall see how this formula, Eq. (25.48), comes about.



Chapter 14 ®)
Linear Operators on a Vector Space I

We turn now to operators on an LVS. To start with, we need a number of simple
definitions. Most of these are obvious in the case of finite-dimensional vector spaces.
But the case of infinite-dimensional spaces is nontrivial, and due care must be exer-
cised. As always, I shall merely describe and list some relevant results in brief,
without getting into technical details and proofs of assertions, or the formal mathe-
matics. These details and formal proofs are, however, particularly important at least
for some of the topics in this chapter. It is therefore advisable to supplement the
discussion given here with more extended treatments to be found in standard texts
on operator algebra and functional analysis (see, e.g., the Bibliography).

14.1 Some Basic Notions

14.1.1 Domain, Range, and Inverse

An operator A in an LVS V is an entity that “acts” on a vector |¢) of the LVS to
produce an element |¢) of the LVS: this is written as

Alg) = [v). (14.1)

Domain: A moment’s thought shows that the foregoing statement needs to be qual-
ified. The point is that when a given operator A acts on an arbitrary element of V, it
may not necessarily produce a vector that remains an element of V. That is, A may
take some vectors of V “out” of V. In general, A |¢) will remain inside V only when
|¢) belongs to some subset of the elements of V. This subset is called the domain
D, of the operator A.
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ran A

dom A \V/ vV

Fig. 14.1 Illustrating the domain and range of an operator A on an LVS V. The dots denote vectors.
A may be regarded as a map that maps vectors to other vectors. Vectors in D4, the domain of A
(shaded area on the left), are mapped to vectors in A 4, the range of A (shaded area on the right).
Vectors in V that are not in D4 are mapped to vectors that do not lie in V

Range: As |¢) runs through all the elements of D4, the vectors A |¢) = |¢) that
result constitute a set A 4 (that may either be all of V itself, or a subset of V). This
set A, is called the range of the operator A. If A is regarded as a map, A4 is the
image of the map. Recall that this term has already been introduced in Chap. 12,
Sect. 12.3.2, in connection with the rank of a matrix. Figure 14.1 illustrates these
concepts pictorially.

The domain plays an important role in what is meant by the equality of two operators.

e Two operators are equal if and only if they have (i) the same domain, and (ii) the
same action on each given vector in their common domain.

Inverse: When does an operator have an inverse? If an operator A maps each pair of
different elements of D 4 into a pair of different elements of A 4, then A has an inverse
A~!. This operator maps the elements of A 4 into the elements of D 4. Alternatively

o If, for every |1)) € Ay, there is a unique |p) € D4 such that A |¢) = |1), then A

has an inverse. We then have

A7) = |¢) if and only if A|¢) = [¢)). (14.2)

14.1.2 Linear Operators, Norm, and Bounded Operators

We are ready, now, to define a linear operator on an LVS. A is a linear operator if
the two conditions below are satisfied:

(1) The domain D, is a linear manifold. (You will find it helpful, at this point, to
review the definition of a linear manifold given in Chap. 13, Sect. 13.3.2.)
(i1) For any two vectors |¢) and |x) in D4, we have
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A(a|g) + Bx) = a Alg) + B Alx), (14.3)

where « and (3 are arbitrary scalars.
In this book, we shall be concerned only with linear operators.

The norm of a linear operator: The norm of a vector provides a measure of its
“length”. We now need a measure of how “large” an operator A is. Such a measure
is provided by the norm of the operator. Take each vector |¢) € Dy, and find the
norm of the vector A |¢) = |¢). The value of this quantity depends, of course, on the
norm of |¢) itself. To eliminate this trivial dependence, divide by the norm of |¢).
The largest of the quantities thus obtained is a plausible measure of how “large” the
operator A itself is. More precisely, the norm of an operator A is defined as

Aol _ o (AglAg)'?

1Al = sup up
weps ol e, (@lo)/2

(14.4)

Here “sup” stands for the supremum or the least upper bound. If a is any scalar, then
the norm of the operator a A is given by

lla All = lal [ A]l. (14.5)

Bounded and unbounded operators: A linear operator A is a bounded operator
if ||A|l < oo. If the supremum in Eq. (14.4) is infinite, then A is an unbounded
operator.

e In general, differential operators over function spaces are unbounded operators.

Several identities and relationships that hold good for finite-dimensional matrices are
not necessarily valid for unbounded operators. Caution must therefore be exercised
when dealing with such operators, which occur quite frequently in quantum mechan-
ics. Here is an example. If A and B are (n x n) matrices, then Tr (AB) = Tr (BA),
whether or not A and B commute with each other. This property, called the cyclic
invariance of the trace, is not necessarily valid when the matrices are infinite-
dimensional.

This statement is illustrated by the following well-known example. A conjugate
position—momentum pair in quantum mechanics satisfies the canonical commutation
relation gp — pq = ihl, where [ is the unit operator. Take the trace of both sides
of this relation. Setting Tr (¢p) = Tr (pq) immediately leads to a fallacy: the left-
hand side vanishes while the right-hand side does not. The point is that ¢ and p are
unbounded operators, and cannot be represented by finite-dimensional matrices. We
will find appropriate representations for these operators as differential operators and
infinite-dimensional matrices, respectively, in Sects. 14.3.1 and 14.4.4.

Linear operators can be combined to produce other linear operators. Let A and B
be linear operators in V. The following important properties hold good:
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(i) Any linear combination C = aA + bB (where a and b are scalars) is also a
linear operator, with domain D¢ = Dy N Djp.
(ii) The operators AB and BA are also linear operators.
(iii) If A and B are bounded linear operators in all of V, then so are AB and BA.
(iv) The norm of a product of two operators satisfies the inequality

IAB| < [|A[|B]|. (14.6)

% 1.If A and B are linear operators in V with domains D4, Dp and ranges A4, Ap,
respectively, what are the domains of the operators AB and BA?

% 2. In £;(—00, 00), consider the linear operators A, A,, A3, and A4 whose
actions on any element f(x) are as follows:

d
(@) Ay f(x) = I ) (b) Ay f(x) =x" f(x), n=1,2, ...
2 1
© As f)=e "2 f(x) (@) As f(x) = 2 1)f()
Which of the operators A; are bounded operators?

* 3.Let|¢p) = (x1, x2, x3,...) beanarbitrary element of £,. Consider the operators
A; whose actions on |¢) are as follows:

i) Ailg) =
(i) Azlg) =
(iii) A3|p) = (x2, X3, X4, ...),
(Av)  Aslg) = (x1/11, x2/2!, x3/3),.
)
) =
)

(2x1, X2, x3,...),

(Oa X1, X2, X3, . ~-)1

(V) Aslg) = (1lxy, 2 xo, 3lxs,. )
(Vi) Aglp) = (x1, x1 +x2, X1 +x2 4+ X3, ...),
(i) Aqld) = (1, X1, X200 X3 ...).

(a) Identify the linear operators among the A;.

(b) Write down matrix representations (in the natural basis) for each of the linear
operators.

(c) What are the domains of the linear operators?

(d) Which of the linear operators are bounded? And what are their norms?

(e) Which of the linear operators have inverses?

14.2 The Adjoint of an Operator

Next, we turn to the important concept of the adjoint of a linear operator.
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14.2.1 Densely Defined Operators

From the mathematical point of view, operators in finite-dimensional linear spaces
can be handled in a straightforward manner. Very broadly speaking, this statement
extends to the case of bounded operators in infinite-dimensional spaces. It is the case
of unbounded operators that requires careful specification of many conditions and
caveats. These involve going into functional analysis at a level beyond the scope of
this book.

A fundamental aspect of an unbounded operator is that its domain may be a
subset of the LVS, rather than all of it. Many technical complications follow as a
consequence. As the intention is to keep things as simple as possible, let us confine our
attention to the restricted situation in which two conditions are met. These restrictions
enable us to make some rigorous statements that are also quite straightforward.
Moreover, this situation is precisely the one that is of direct interest in physical
applications, especially in quantum mechanics. The restrictions are as follows.

(1) The LVS is assumed to be a Hilbert space, rather than a general linear space.
Recall that a Hilbert space is a complete linear vector space (the limits of all Cauchy
sequences of vectors are elements of the space), on which an inner product of vectors
is defined.

(i) The second assumption is that the domain of any operator we consider is dense
in the space: in other words, in the neighborhood of any element of the space, there
is at least one vector belonging to the domain of the operator. Such an operator is
said to be densely defined on the space concerned. Many of the technical difficulties
associated with unbounded operators are not present for densely defined operators.

14.2.2 Definition of the Adjoint Operator

Let A be a linear operator acting on the vectors of a linear space V. The inner product
of any two arbitrary vectors is denoted by (x| % ), as usual. Suppose A first acts on the
vector |x), and then we take the inner product of the resulting vector with 1)), to get
(A x|v). The question is: Can we first act on the other vector |¢/) with some operator
B, and then take the inner product with (x|, to get the same answer as before? This
is the basic idea behind the adjoint of an operator.

Adjoint of an operator: If, for every pair of vectors |¢)) and |x) (in the domain of
A), there exists an operator B such that

(Xl Av) = (BxI¥), (14.7)

then the operator B is said to be the adjoint of the operator A. In order to show that it
is related to the particular operator A, it will be denoted by A'. The defining equation
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for the adjoint AT of an operator A is therefore the relation'

(x| A¢) = (A" xI¥) (14.8)

that must be satisfied for every pair of vectors in the domain of A. It follows that the
adjoint of the equation A [1)) = |¢) is (| AT = (¢|.

(i) In the case of a finite-dimensional LVS of n dimensions, in which operators
are representable by (n x n) matrices, the adjoint AT is nothing but the Hermitian
conjugate (i.e., complex conjugate transpose) of the matrix A. (Based on the case of
(n x n) matrices, the adjoint of a general operator is often loosely called its Hermitian
conjugate in the physics literature.)

(ii) For operators that are not represented by finite-dimensional matrices, the adjoint
must be found, in principle, from the defining relation, Eq. (14.8).

(iii) When A is an unbounded operator, the existence of its adjoint operator AT is
guaranteed, provided A is densely defined.

(iv) The adjoint of the adjoint of an operator is the operator itself, (A")T = A.

(v) If ¢ is a scalar, (cA)T = c* AT, where ¢* is the complex conjugate of c.

(vi) Most importantly, in general,

(149)

That is, the domain of AT is generally larger than that of A, and contains the latter.
Explicit examples of this fact will be given shortly, involving the derivative operator
on a function space.

Note: The more conventional definition used in mathematics for the adjoint of an
operator A is as follows: if, for every [1), |x) € D4, there exists an operator B such
that

(AxIy) = (xIBY), (14.10)

then B is the adjoint of A. (Compare this with Eq. (14.7).) The identifying equation
for AT is therefore

(AxIp) = (x|AT ), (14.11)

rather than Eq. (14.8). As long as A acts in a finite-dimensional LVS, and is rep-
resented by an (n x n) matrix, it makes no difference whether we use (14.8) or
(14.11) as the defining equation for the adjoint. It does make a difference, however,
when A is an unbounded operator, and is represented (for instance) by a differential
operator. Now, the definition in Egs. (14.10)—(14.11) is consistent with the manner
in which the inner product (f | g ) is defined in the mathematics literature, namely,
(flg)= ffooodx f(x) g*(x). In the physics literature, however, it is customary to

IThere is an important matter of notation involved here. See the Note that follows below, after Eq.
(14.9).
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define this inner productas (f | g) = f_ooocdx f*(x) g(x), as we have already done in
Eq. (13.15) of Chap. 13, Sect. 13.2.2. With this definition, the appropriate definition
of the adjoint is as given by Eqs. (14.7)—-(14.8), and we shall stick to it.

14.2.3 Symmetric, Hermitian, and Self-adjoint Operators

An operator A is self-adjoint if A = AT, It is obvious that this is a natural definition
of self-adjointness. But is important to recall here what is meant by the equality of
two operators. As stated in Sect. 14.1.1, the two operators must have (i) the same
domain, and (ii) the same action on each given vector in their common domain (see
below).

For an operator represented by a finite-dimensional matrix, it is trivial to verify
whether A is self-adjoint or not. All you have to do is to check whether the matrix
A is Hermitian. In this case, “self-adjoint” is the same thing as “Hermitian”. It is
important to remember that this is not true for more general operators. Hermitian
does not necessarily imply self-adjoint when the LVS is infinite-dimensional, and
the operators are not representable as finite-dimensional matrices, and may not even
be bounded operators.

In general, an operator A is self-adjoint if, and only if, both of the conditions listed
below are satisfied:

(i) The operator AT as identified from the relation (A x|¢) = (x| AT ) must be the
same as the operator A. The operator is then said to be symmetric.

If a symmetric operator is also a bounded operator, then it is said to be a Hermitian
operator. In physics, however, this distinction is often not made, and any symmetric
operator is (loosely) called Hermitian.

(ii) Further, the domains of the two operators must be identical, i.e., we must have
D4 = D4+ —whereas, in general, the domain D4 is contained in the larger
domain D4+.

Only if both (i) and (ii) are satisfied can we say that A is self-adjoint, and write
A = A" as an operator equality.

Why is it necessary to make this distinction between symmetric (or “Hermitian’)
operators and self-adjoint operators? Apart from mathematical correctness, there
is an important implication for quantum mechanics. It can be shown that all the
eigenvalues of a self-adjoint operator are real. In elementary treatments of quantum
mechanics, we learn that real physical observables are represented by Hermitian
operators, and that these have only real eigenvalues. The more accurate statement is
the following:

e In quantum mechanics, (real-valued) physical observables are represented by self-
adjoint operators, and these have only real eigenvalues.

This distinction between the properties of symmetry and self-adjointness of linear
operators (the latter is a stronger requirement) becomes relevant because many of the
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basic physical quantities in quantum mechanics, such as the position and momentum
operators of particles, are unbounded operators. The momentum (or derivative) oper-
ator on a finite interval provides an explicit example of an operator that is symmetric
but not self-adjoint, as you will see in Sect. 14.3.3. Another example, to be discussed
in Sect. 14.3.6, is the radial component of the linear momentum of a particle moving
in d-dimensional space, where d > 2.

14.3 The Derivative Operator in £,

14.3.1 The Momentum Operator of a Quantum Particle

In Chap. 13, Sect. 13.2.5, you have seen how the function space £, makes its appear-
ance in quantum mechanics: normalizable wave functions are £, functions. The
derivative operator, that acts on these wave functions, also appears naturally. It does
so as a consequence of the fundamental canonical commutation relation between
the self-adjoint operators representing a conjugate coordinate—momentum pair. For
just a moment, let us indicate operators with an overhead caret, in order to make
things clear. (This symbol will be omitted subsequently, because the occurrence of
an operator will be clear from the context.) As I have already pointed out in Sect.
14.1.2, the fundamental commutation relation

£, pl=xp—pi=ihl, (14.12)

where 1 is the unit operator, immediately rules out the possibility of representing the
position and momentum operators X and p of a particle by (z x n) matrices for any
finite value of n. On the other hand, two representations that are consistent with the
commutation relation are the following:

(i) Let the state vector |W (¢)) of a particle moving in one dimension be represented in
the position basis by the position-space wave function ¥ (x , t) = (x |V (¢)). Then,
the position operator acting on |W (¢)) is represented by the variable x multiply-
ing ¥(x, t), while the momentum operator acting on |V (¢)) is represented by the
derivative operator —if 0/0x acting on ¢ (x, t). That is,

(x| X|V@)) =x (x| V(@) =xv(x, 1) (14.13)

and

0 0
(x|]3|\I’(t))=—iha—(x|\Il(t))=—ih—2/1(x, t). (14.14)
X Ox

(I have used a partial derivative with respect to x even in this one-dimensional case
because 1 (x, t) is a function of both x and ¢.)
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(ii) On the other hand, let the state vector [W (7)) be represented in the momentum
basis by the momentum-space wave function ¢(p, ) = (p |¥ (7)). It is now the
momentum operator acting on |\ (¢)) that is represented by p multiplying ¥(p , t).
The position operator acting on |V (7)) is then represented by the derivative operator
+ih0/0p acting on 9 (p, t). That s,

(PIAIY @) =p(pI¥®)=pid(p. 1) (14.15)

and

A 0 O ~
(plx|W¥ (1)) =+iha— (pI¥ @) =+ih—(p,1). (14.16)
p op

Note the plus sign in Eq. (14.16), in contrast to the minus sign in Eq. (14.14). This
difference in sign arises from, and is necessary for consistency with, the commutation
relation (14.12).

For a particle moving in two or more spatial dimensions, the partial derivatives
are replaced by the corresponding gradient operators. Symbolically, therefore,

\f — 71, p— —ihV, (position basis), \ (14.17)

and

‘15 —p, F— +ihV, (momentum basis). ‘ (14.18)

In each case, these are unique representations of the operators concerned.
A proper understanding of Egs. (14.13)—(14.18) is necessary in order to begin to
understand quantum mechanics!

14.3.2 The Adjoint of the Derivative Operator in
L(—00, 00)

The next question that arises is: What is the adjoint of the derivative operator d /dx
in the linear space £,(—00, 00)? We could take recourse to physics, and argue as
follows: the momentum operator” of a particle moving in one dimension must be
self-adjoint. But this operator is represented in the position basis by — i d /dx. Since
i changes to —i when the adjoint is taken, d/dx must change to —d/dx so that p
itself remains equal to its adjoint. Hence the adjoint of the operator d/dx must be
—d/dx.

This heuristic reasoning is easily made more precise as follows. Consider any
two vectors | f) and | g ), represented in the function space L,(—o0, o0) by the

2From now on, I will drop the overhead caret that we have used to denote operators. You can identify
them from the context.
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square-integrable functions f(x) and g(x), respectively. Equation (14.8) reads, in
this case,

/ dx f*(x) (A g(x)) =/ dx (AT f(x))*g(x). (14.19)

o0 o0

In the case when A = d/dx, we have

*© d
iag = [ ax o (fhaw)
—00 X
] o0 d
— o[ - [Cax (frw)am. a0

on integrating by parts. But both g(x) and f(x) (and hence f*(x)) must vanish as
x — =00, because they belong to £,(—o0, 00). Therefore

o0 d *
(F1ag) = [ ax(= £ rw) sw=wirlg.  as2n

This suggests that the adjoint we seek is in fact just — d /dx. It is trivial to see that the
domain of d /dx is the same as that of —d /dx. In both cases, the domain is that subset
of functions f(x) € L,(—00, o0) whose first derivatives are also square-integrable,
ie., f'(x) € Ly(—0o0, o0). Hence we may read off the result

d
A=— = Al=-—

— 14.22
dx dx ( )

Multiplying by i, it follows that i d /dx is a self-adjoint operator in £,(—00 , 00).
Further, on functions that are differentiable n times,

dll T " dil
(dxn> = (=1) (dxn) (14.23)

% 4. In the vector space L£,(—00, 00) of square-integrable functions of a real
variable x, show that the adjoint of the operator A is as indicated in each case:

(a) A d = AT d

= X — = — — X

dx 5 dx 5
d d

b) A=x24+— Al =x2 4+ —

(b) x+dx2 = x+dx2

() A=¢¢ (£ =real constant) = AT =e7i¢¥
(d) A =" (n =real constant) = AT =e/"4/
n

) A=x"

n

dxn

x™M.

y (m, n = positive integers) = A" = (=1)"
xn
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14.3.3 When Is —i (d /dx) Self-adjoint in L[a , b]?

We have seen that the operator —i (d /dx) is self-adjoint in £,(—o00, 00). Its domain
is the set of square-integrable functions whose first derivatives are also square-
integrable. In the context of quantum mechanics, the x-component of the momen-
tum operator of a particle is thus represented, in the position basis, by the operator
—ih (d/dx). What happens if the position is restricted to an interval [a, b] where a
and b are finite real numbers?

We must now work in the space Ly[a, b]. Let A = —i (d/dx). Consider, first,
any two functions f(x) and g(x) belonging to L;[a, b] whose first derivatives are
also square-integrable in [a, b]. Then, integrating by parts (as usual),

b d
(F1ag) = [ ax e (=i5g00)

b d %
= a@b)+ [ ax(=irw) gw
— A, b)+ (A flg), (14.24)

where

A(a, b) = i[ f*(@)g(a) — f*(b)g(®)]. (14.25)

Therefore (f |[Ag) = (A f|g) if, and only if, A(a, b) vanishes identically. This is
ensured if we restrict ourselves to functions that vanish at the boundaries a and b, i.e.,
functions that satisfy the conditions g(a) = g(b) = 0 and f(a) = f(b) = 0. Then,
over the domain

D, = [g(x) € Laola, bl| g’ € Lola, b], and g(a) = g(b) = 0}, (14.26)

the operator A is symmetric.

And now for the crucial observation: note that it is not necessary to impose the
additional boundary conditions f(a) = f(b) = 0 in order to derive this result! It
suffices to stipulate the conditions g(a) = g(b) = 0. The immediate conclusion is
that the domain of the adjoint AT is larger than that of the operator A: it comprises
all functions f(x) € Ly[a, b]suchthat f' € L,[a, b], and is not restricted to those
that further satisfy f(a) = f(b) = 0. Thus,

Dy = {f(x) € Lola, bl| f € Lala, b]} > Dy, (14.27)

We may therefore conclude that

e the operator —i(d/dx) is symmetric, but not self-adjoint, over L;[a, b].
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14.3.4 Self-adjoint Extensions of Operators

Is there a way to make the operator A = —i (d/dx) self-adjoint in some suitable
subset of L;[a, b]? In order to achieve this, we must not only show that A is sym-
metric over some domain, but also ensure that its adjoint has the same domain. It is
intuitively clear that, if this is at all possible, it must be done as follows: D4 must be
enlarged beyond the overly-restrictive domain in (14.26), and D 4+ must be shrunk
from the overly-broad domain in (14.27), till the two of them match. As you might
expect, the procedure involves manipulating the boundary conditions appropriately.
Consider, instead of the boundary conditions g(a) = g(b) = 0, the condition

g(b) =€ g(a), (14.28)

where 0 is an arbitrary real constant. The quantity A(a, b) defined in Eq. (14.25)
then reduces to '
A(a,b) = ig(@ [f*@) — & f* )] (14.29)

This quantity vanishes identically if e’ f*(b) = f*(a), or
fb) =€’ f(a). (14.30)

Note that we are compelled to select this boundary condition for f(x), there being
no freedom left in its choice. But Eq. (14.30) is precisely the boundary condition
satisfied by g(x), Eq. (14.28). The domains D4 and D4: are therefore the same.
Hence

e For every given value of the real constant 0, the operator A = —i(d/dx) is self-
adjoint over the domain

Dy =Dy = {h(x) — Lola, b]|h' € Lola, b], and h(b) = eieh(a)},
14.31)

for every value of the real parameter 6.

What we now have is a self-adjoint extension of the operator —i (d/dx) over
Lola, b]. In fact, we have a whole family of such extensions, its members labeled
by the value of the continuous real parameter 6.

14.3.5 Deficiency Indices

The boundary condition (14.28) is not the outcome of mere guesswork. The exten-
sion of a symmetric operator to a self-adjoint operator is an important problem in
functional analysis, and there is a systematic approach to it. I will only touch upon
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it very cursorily and heuristically here, merely quoting the relevant results, without
going into how they arise.

Let A be a symmetric operator over some domain. Whether it has a self-adjoint
extension or not depends on the so-called deficiency indices . and n_ associated
with it. These are defined as the respective numbers of linearly independent solutions
of the eigenvalue equations

Alpy) =ilgy) and Alp_) = —ilp-). (14.32)

Three possibilities then arise:

(i) If ny = n_ =0, A is either self-adjoint or has a unique self-adjoint extension.
In the latter case, A is said to be essentially self-adjoint.

(ii) If ny = n_ = n, where n # 0, there exist self-adjoint extensions of A over
an appropriate domain. In fact, there exists an n-parameter family of such
extensions.

(iii) If n4 # n_, there can be no self-adjoint extension of A.

I have already stated that no explanation will be given here of how these results come
about. Butitis worth adding a line indicating what is involved. The analysis hinges on
the so-called Cayley transform of the operator A, defined as (A — iI)(A +il)~".
This is how the particular operator combinations in Eq. (14.32) arise.

% 5.The example that follows will help you understand how the idea of deficiency
indices works. Use the foregoing to check out the self-adjointness properties of the
operator A = —i (d/dx) over the spaces

(i) Lo(—0o0, 00) (the infinite line);
(i) Ls[a, b], where a and b are finite (a finite interval);
(iii) L£,[0, 00) (the semi-infinite line).

% 6. Consider the anticommutator
A =[x", ply =x"p+ px’

over Ly(—00, 00), where p = —i (d/dx) is the momentum operator (setting i = 1
for convenience) and r is a positive integer. Show that

(a) A, is symmetric for every r > 1;

(b) A, is self-adjoint;

(c) A, is self-adjoint for all even values of r > 2; and

(d) A, has no self-adjoint extension for all odd values of r > 3.
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14.3.6 The Radial Momentum Operator in d > 2 Dimensions

The radial component of the momentum operator of a quantum mechanical particle
provides an instructive physical application of the foregoing. We set & = 1 in this
section for simplicity of notation.

Consider a particle moving in d-dimensional space, where d > 2. Results corre-
sponding to the physically interesting cases d = 2 and d = 3 can be read off from
the general formula to be derived below. As we have seen in Eq. (14.17), the linear
momentum of the particle is represented in the position basis by —i V;.. Can we then
conclude that the radial component of the momentum, p,, is represented by —i d/0r,
since the radial component of the gradient operator is just 0/0r?

The answer is “no”, because there is a problem of noncommutativity involved
here. Classically, the radial component of the momentum is given by p, = e, - p =
P - €., where e, = r/r. In quantum mechanics, however, e, - p # p - e,, because the
Cartesian components of p do not commute with the corresponding components of
r/r. A linear combination of the form

pr:a(er'p)"r(l_a)(p'er)

suggests itself as a possible definition of p,. The requirement that p, be a symmetric
operator then implies that o must be equal to %, leading to the definition

def. %(r .p+p.;) (14.33)

Pr -
r

for the radial momentum operator. Using the position-space representation p —
—i V, for the momentum operator, the position-space representation of the radial
momentum operator is then given by

a-1.9 ) (14.34)

pr_)_l( 2r +E

The range of r is 0 < r < o0, and the measure of integration over r is ri=ldr. We
are therefore concerned with the space of functions A (r) € £;[0, co) such that

/ drr* =V h(r)|? < oo. (14.35)
0

The radial component of the momentum is a real physical observable. The operator
pr must therefore either be self-adjoint, or essentially self-adjoint, or at least have a
self-adjoint extension (or extensions).

% 7. p, turns out to be an essentially self-adjoint operator over £,[0, 0c0). The
weight factor ?~! plays a crucial role in establishing this result, as you will see.

(a) Show that —i (Q/0r) is not a symmetric operator.
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(b) Verify that Eq. (14.33) yields Eq. (14.34) for p,, on using p - —i V;.

(c) Show that p, is a symmetric operator in a certain domain.

(d) Show that there is a unique self-adjoint extension of p,, so that it is an essentially
self-adjoint operator.

(e) Corroborate this result by showing that the deficiency indices of p, aren, =0
andn_ = 0.

14.4 Nonsymmetric Operators

We know that physical observables correspond to self-adjoint operators (or their
self-adjoint extensions) in quantum mechanics. But this does not mean that other
operators are without any use at all. They occur quite frequently, and have interesting
properties. Remember that the eigenvalues of a non-self-adjoint operator need not
be real, in general. The example that follows shows some of the possibilities in this
regard.

14.4.1 The Operators x £ ip

A simple but important example of non-self-adjoint (in fact, nonsymmetric and hence
non-Hermitian) operators already occurs in the elementary quantum mechanics of a
particle moving in one dimension. Let us work in suitable units such that both the
position x and the momentum p have the physical dimensions of +/A. It is tedious to
carry around the factor (i /) in the canonical commutation relation (14.12) between
x and p. This factor is easily eliminated by defining the linear combinations

and (hence) o & x\/_g . (14.36)

def. X +1ip

V2h

You would very likely have come across the operators @ and a' in the context of the
quantum mechanical linear harmonic oscillator. But these linear combinations of x
and p can be defined in general, and are not restricted to the particular problem of
the oscillator. In terms of these nonsymmetric operators, the fundamental canonical

commutation relation becomes
s

3What the particular problem of the harmonic oscillator does is to provide two “dimensionful”
parameters—the mass m and the natural frequency w of the oscillator. These parameters, in combi-
nation with £, provide natural scales of length and momentum in the oscillator problem, proportional
to (h/mw)'/? and (mhw)'/?, respectively.
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In the position basis, the representations for the operators a and a' are of course

a= (x ¥ h%) and af = \/%i (x - h%), (14.38)

respectively. It is easy to derive the following results:

(1) The operator a has a continuous infinity of complex eigenvalues and correspond-
ing normalizable eigenfunctions.
(ii) In contrast, its adjoint @™ has no normalizable eigenfunctions at all.

% 8. The representations in Egs. (14.38) can be used to establish these results.

(a) Show that a has an eigenvalue 0, with a normalizable eigenvector |®(). Let
(x| ®g) = Po(x) be the corresponding eigenfunction in the position basis. The
eigenvalue equation a |®() = 0 is given in this basis by the differential 